Tagging (POS, NER)

CS 485, Spring 2024 Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485_s24/

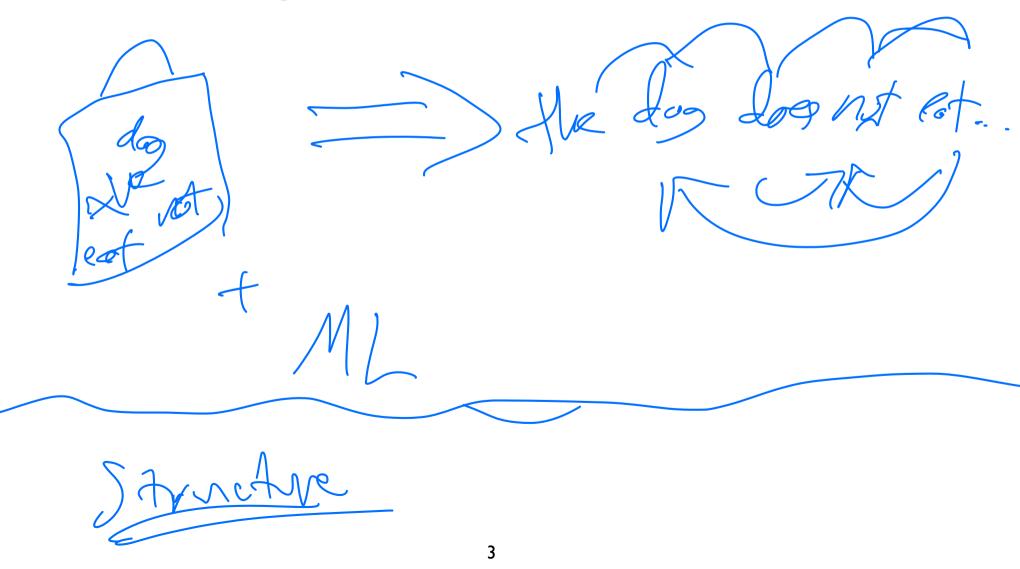
Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

- HW2 Phase I due this Friday! Phase 2 due next Monday 3/11.
- Announcement: Project proposals are due by the end of next week: Friday, 3/15 (before spring break starts)
- after break: HW3, syntax / language models
- after that, Midterm: early to mid-April. Practice questions will be available when we get closer.

Upcoming NLP topics

• From bags-of-words to ordered structure....



Part of speech tags "I som the

- Syntax = how words compose to form larger meaning-bearing units
- POS = syntactic categories for words
 - You could substitute words within a class and have a syntactically valid sentence.
 - Give information how words can combine.
 - I saw the dog
 - I saw the <u>eat</u>
 - I saw the <u>{table</u>, <u>sky</u>, <u>dream</u>, <u>school</u>, <u>anger</u>, ...}

Schoolhouse Rock: Conjunction Junction

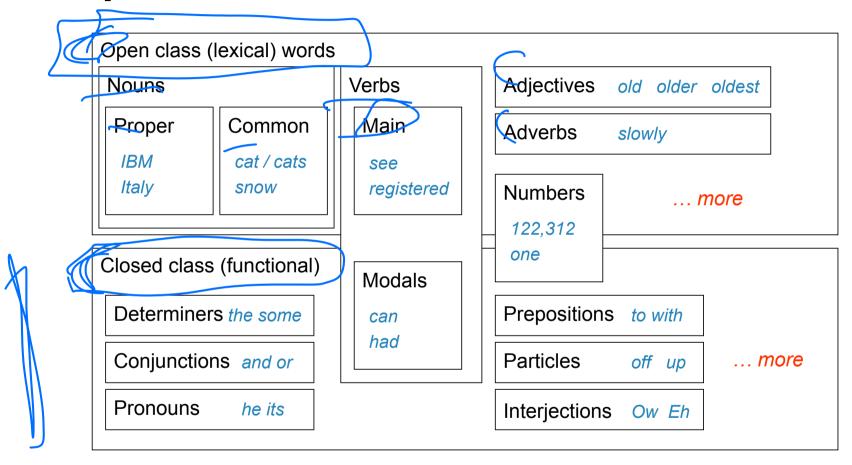
https://www.youtube.com/watch?v=ODGA7ssL-6g&index=1&list=PL6795522EAD6CE2F7

Demo

Part of speech tagging

• I saw the fire today • Fire! to right of myhe" than Geron place Semantic

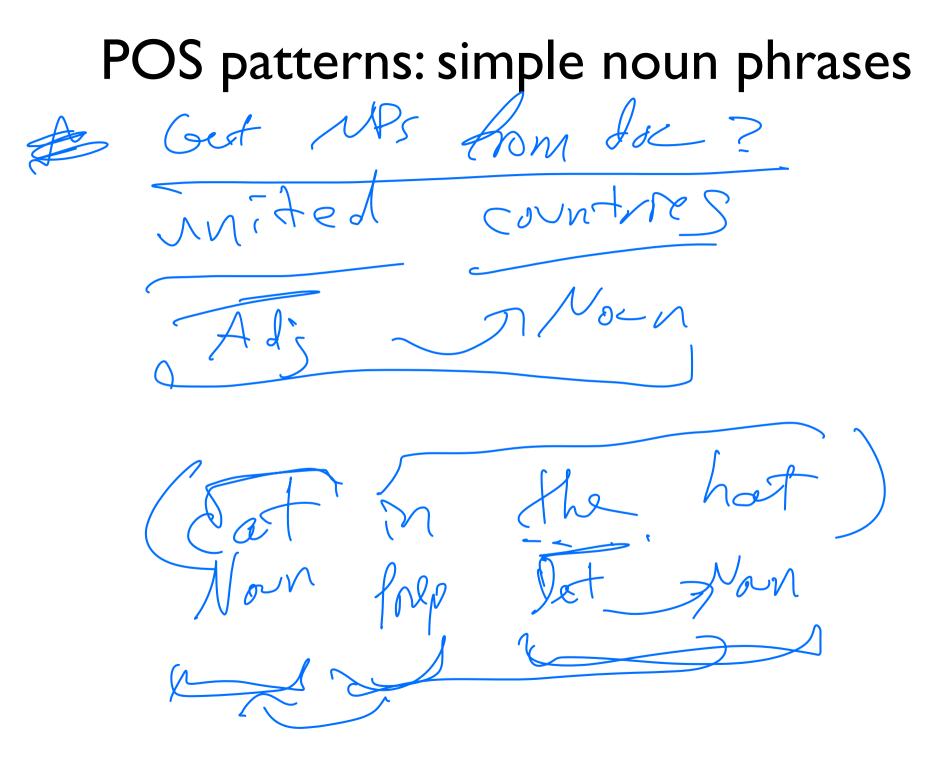
Open vs closed classes



slide credit: Chris Manning

Why do we want POS?

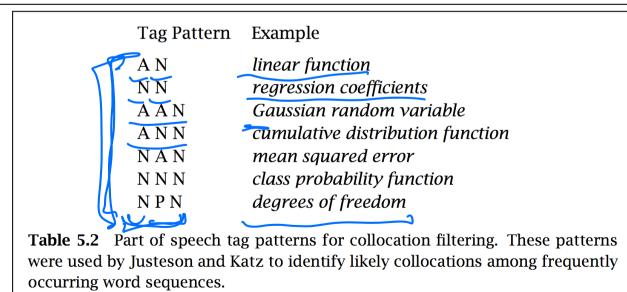
- Useful for many syntactic and other NLP tasks.
- Phrase identification ("chunking")
 - Named entity recognition (proper nouns are often names)
- Syntactic/semantic dependency parsing
 - Sentiment
- Either as features or heuristic filtering
- Esp. useful when not much training data
- Limitations
 - Coarse approximation of grammatical features
 - Sometimes cases are hard and ambiguous



POS patterns: simple noun phrases

 Quick and dirty noun phrase identification (Justeson and Katz 1995, Handler et al. 2016)

Grammatical structure: Candidate strings are those multi-word noun phrases that are specified by the regular expression $((A | N)^+ | ((A | N)^*(NP)^?)(A | N)^*)N$,



Congressional bills

(Top terms, ranked by relative log-odds z-scores)

Uni. / and, deleted, health, mental, domestic, inserting, grant, programs, prevention, violence, program, Dem. / striking, education, forensic, standards, juvenile, grants, partner, science, research

Uni. any, offense, property, imprisoned, whoever, person, more, alien, knowingly, officer, not, united, intent, commerce, communication, forfeiture, immigration, official, interstate, subchapter

NPs Dem.

NPs Rep.

POS patterns: sentiment

• Turney (2002): identify bigram phrases, from unlabeled corpus, useful for sentiment analysis.

Table 2. An example of the processing of a review that

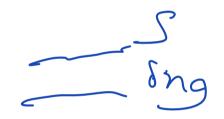
]	the author has classif	1 0	
Table 1. Patterns of tags for extracting two-word phrases from reviews.		Extracted Phrase	Part-of-Speec Tags	Orientation
First WordSecond WordThird Word (Not Extracted)1. JJNN or NNSanything not NN nor NNS2. RB, RBR or JJnot NN nor NNS3. JJJJnot NN nor NNS4. NN or NNSJJnot NN nor NNS5. RB, RBR, orVB, VBD, RBSanything 	,	online experience low fees local branch small part online service printable version direct deposit well other inconveniently located other bank true service	JJ NN JJ NNS JJ NN JJ NN JJ NN JJ NN RB JJ RB VBN JJ NN JJ NN JJ NN	2.253 0.333 0.421 0.053 2.780 -0.705 1.288 0.237 -1.541 -0.850 -0.732
(plus co-occurrence information)			JJ 1111	0.132

POS Taggers

- How do you predict POS tags?
- Off-the-shelf models widely available, at least for mainstream varieties of major world languages
 - e.g. Spacy, Stanza, CoreNLP, etc.
- Typically use logistic regression-like models
 - Each token instance is a classification problem
 - Labeled datasets: e.g. <u>https://universaldependencies.org/</u>

Useful features for a tagger

- Key sources of information:
 - I. The word itself
 - 2. Word-internal characters



- 3. Nearby words in a context window
 - Context window features are used for ALL tagging tasks!
 - Necessary to deal with *lexical ambiguity*

POS Tagging: lexical ambiguity

Can we just use a tag dictionary (one tag per word type)?

Types:		WS	J	Bro	wn	Most words types are
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)	<i>,</i> ,
Ambiguous	(2 + tags)	7,025	(14%)	8,050	(15%)	unambiguous
Tokens:						But not so for
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)	
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)	tokens!

- Ambiguous wordtypes tend to be the common ones.
 - I know **that** he is honest = IN (relativizer)
 - Yes, **that** play was nice = DT (determiner)
 - You can't go **that** far = RB (adverb)

POS Tagging: baseline

- Baseline: most frequent tag. 92.7% accuracy
 - Simple baselines are very important to run!

- Is this actually that high?
 - I get 0.918 accuracy for token tagging
 - ...but, 0.186 whole-sentence accuracy (!)

- Next: many other NLP tasks can be cast as tagging
 - Named entities
 - Word sense disambiguation

Named entity recognition

SOCCER - [PER BLINKER] BAN LIFTED . [LOC LONDON] 1996-12-06 [MISC Dutch] forward [PER Reggie Blinker] had his indefinite suspension lifted by [ORG FIFA] on Friday and was set to make his [ORG Sheffield Wednesday] comeback against [ORG Liverpool] on Saturday . [PER Blinker] missed his club's last two games after [ORG FIFA] slapped a worldwide ban on him for appearing to sign contracts for both [ORG Wednesday] and [ORG Udinese] while he was playing for [ORG Feyenoord].

Figure 1: Example illustrating challenges in NER.

- Goal: for a fixed entity type inventory (e.g. PERSON, LOCATION, ORGANIZATION), identify all *spans* from a document
 - Name structure typically defined as flat (is this good?)

BIO tagging

• Can we map identify phrases (spans) identification to token-level tagging?

BIO tagging

Goal: represent two spans	Barack	Obama	Michelle	Obama	were	•••
NAME vs O doesn't work	Ν	Ν	Ν	Ν	0	
BIO	B-N	I-N	B-N	I-N	0	

make cross-product of "B"egin and "I"nside against each class type: O, B-PER, I-PER, B-LOC, I-LOC, ...

... then spans can easily be extracted from tagger output.

Features for tagging

- Word-based features
 - Word itself
 - Word shape ("Aa" "aa")
 - Contextual (word window) variants: versions of these at position t-1, t-2, t-3 ... t+1, t+2, t+3 ...
- External lexical knowledge
 - Gazetteer features: Does word/phrase occur in a list of known names?
 - Other hand-built lexicons
- Neural network embedding representations (later in course)

Gazetteers example

1)People: people, births, deaths. Extracts 494,699 Wikipedia titles and 382,336 redirect links. 2)Organizations: cooperatives, federations, teams, clubs, departments, organizations, organisations, banks, legislatures, record labels, constructors, manufacturers, ministries, ministers, military units, military formations, universities, radio stations, newspapers, broadcasters, political parties, television networks, companies, businesses, agencies. Extracts 124,403 titles and 130,588 redirects. 3)Locations: airports, districts, regions, countries, areas, lakes, seas, oceans, towns, villages, parks, bays, bases, cities, landmarks, rivers, valleys, deserts, locations, places, neighborhoods. Extracts 211,872 titles and 194,049 redirects. 4) Named Objects: aircraft, spacecraft, tanks, rifles, weapons, ships, firearms, automobiles, computers, boats. Extracts 28,739 titles and 31,389 redirects. 5)Art Work: novels, books, paintings, operas, plays. Extracts 39,800 titles and 34037 redirects. 6)**Films**: films, telenovelas, shows, musicals. Extracts 50,454 titles and 49,252 redirects. 7)Songs: songs, singles, albums. Extracts 109,645 titles and 67,473 redirects. 8) Events: playoffs, championships, races, competitions, battles. Extract **20**,176 titles and 15,182 redirects.