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• Logistic regression: given features and feature weights, we can 
predict probabilities on new documents


• We can train the weights to maximize training data likelihood


• But will it generalize?


• How to evaluate a classifier model?
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Held-out data for evaluation

• How well will my classifier work in the future?


• Analogy: overfitting for curve-fitting


• Can we look at classifier accuracy on training data?
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• Need to diagnose how much your model is overfitting the training set


• Data splits are key.  Some ways to split:


• Training set  -vs-  test set


• Training set  -vs-  "validation"/"development" set  -vs-  test set


• Cross-validation (within training set)  -vs-  test set

5

Held-out data for evaluation



Cross-validation
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Figure 4.7 10-fold cross-validation

such as F1, or accuracy. Perhaps we want to know if our logistic regression senti-
ment classifier A (Chapter 5) gets a higher F1 score than our naive Bayes sentiment
classifier B on a particular test set x. Let’s call M(A,x) the score that system A gets
on test set x, and d (x) the performance difference between A and B on x:

d (x) = M(A,x)�M(B,x) (4.19)

We would like to know if d (x) > 0, meaning that our logistic regression classifier
has a higher F1 than our naive Bayes classifier on X . d (x) is called the effect size;effect size
a bigger d means that A seems to be way better than B; a small d means A seems to
be only a little better.

Why don’t we just check if d (x) is positive? Suppose we do, and we find that
the F1 score of A is higher than B’s by .04. Can we be certain that A is better? We
cannot! That’s because A might just be accidentally better than B on this particular x.
We need something more: we want to know if A’s superiority over B is likely to hold
again if we checked another test set x0, or under some other set of circumstances.

In the paradigm of statistical hypothesis testing, we test this by formalizing two
hypotheses.

H0 : d (x) 0
H1 : d (x)> 0 (4.20)

The hypothesis H0, called the null hypothesis, supposes that d (x) is actually nega-null hypothesis

tive or zero, meaning that A is not better than B. We would like to know if we can
confidently rule out this hypothesis, and instead support H1, that A is better.

We do this by creating a random variable X ranging over all test sets. Now we
ask how likely is it, if the null hypothesis H0 was correct, that among these test sets
we would encounter the value of d (x) that we found. We formalize this likelihood
as the p-value: the probability, assuming the null hypothesis H0 is true, of seeingp-value

the d (x) that we saw or one even greater

P(d (X)� d (x)|H0 is true) (4.21)

So in our example, this p-value is the probability that we would see d (x) assuming
A is not better than B. If d (x) is huge (let’s say A has a very respectable F1 of .9
and B has a terrible F1 of only .2 on x), we might be surprised, since that would be
extremely unlikely to occur if H0 were in fact true, and so the p-value would be low

• Cross-validation (within training set)  -vs-  test set


• Advantage: use all labeled data



Regularization in Naive Bayes
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Regularization in logistic regression

• If "dog" only occurs for class k, what weight will it get?


• Consider MLE training:
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• Solution: regularized training for logistic regression



Overfitting and generalization

• Overfitting: your model performs overly optimistically on 
training set, but generalizes poorly to other data (even from 
same distribution)


• Non-classification example: curve-fitting [blackboard]


• To diagnose: separate training set vs. test set.  


• How did we regularize Naive Bayes and language modeling? 
For logistic regression: L2 regularization for training
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Regularization tradeoffs

• No regularization    <-------------->    Very strong regularization
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Logistic regression wrap-up

• Given you can extract features from your text, logistic 
regression is the best, easy-to-use, method


• Logistic regression with BOW features is an excellent baseline 
method to try at first


• Will be a foundation for more sophisticated models, later in 
course


• Always regularize your LR model


• We recommend using the implementation in scikit-learn


• Useful: CountVectorizer to help make BOW count vectors 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• chalkboard photos from 2/20 follow
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• stopped here 2/20
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Evaluation metrics
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As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrixconfusion

matrix
is a table for visualizing how an algorithm performs with respect to the human gold
labels, using two dimensions (system output and gold labels), and each cell labeling
a set of possible outcomes. In the spam detection case, for example, true positives
are documents that are indeed spam (indicated by human-created gold labels) that
our system correctly said were spam. False negatives are documents that are indeed
spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it for text classification tasks. That’s because accuracy
doesn’t work well when the classes are unbalanced (as indeed they are with spam,
which is a large majority of email, or with tweets, which are mainly not about pie).
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Figure 4.4 A confusion matrix for visualizing how well a binary classification system per-
forms against gold standard labels.

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,
• Accuracy:


• But do we care about false positives and negatives equally?

• What about rare classes?


• Precision, Recall, F1



Decision threshold

• Problem: you'd like a higher precision model 
(for class SPAM), and willing to sacrifice recall.


• Solution: predict SPAM more conservatively: 
only if probability exceeds a threshold


• Compare to the default decision rule 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Precision-Recall curve

• Different models may trade off precision and 
recall


• For a single model, different decision thresholds 
may trade off precision and recall


• View them jointly with a precision-recall 
curve
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Do I have enough labels?

• For training, hundreds to thousands of annotations may be needed 
for reasonable performance


• Current work: how to usefully make NLP models with <10 or <100 
training examples. "Few-shot learning"


• Exact amounts are difficult to know in advance. Can do a learning 
curve to estimate if more annotations will be useful. 
 

• But where do the labels come from?  Next week!
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