
Logistic Regression for Text
Classification

[With slides from Ari Kobren and SLP3]

CS 485, Spring 2024 
Applications of Natural Language Processing 

https://people.cs.umass.edu/~brenocon/cs485_s24/

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

https://people.cs.umass.edu/~brenocon/cs485_s24/

BOW linear model for text classif.

• Parameters: For each class k, and
word type w, there is a word weight

• Representation: bag-of-words vector
of doc d's word counts

• Prediction rule: choose class y with highest score

• Problem: classify doc d into one of k∈1..K classes

Keyword count as linear model

• Parameters: For each class k, and
word type w, there is a word weight

• Representation: bag-of-words vector
of doc d's word counts

• Prediction rule: choose class y with highest score

• Problem: classify doc d into one of k∈1..K classes

Naive Bayes as linear model

• Parameters: For each class k, and
word type w, there is a word weight

• Representation: bag-of-words vector
of doc d's word counts

• Prediction rule: choose class y with highest score

• Problem: classify doc d into one of k∈1..K classes

Linear classification models

• The foundational model for machine learning-based NLP!

• Examples

• The humble "keyword count" classifier (no ML)

• Naive Bayes ("generative" ML)

• Today: Logistic Regression
• a linear classification model, trained to be good at prediction

• allows for features

• used within more complex models (neural networks)

5

Motivation: feature engineering

• For Naive Bayes, we used counts of each word in the
vocabulary (BOW representation). But why not also use....

• Number of words from "CS485 Crowdsource Positive Lexicon"

• ...from "CS485 Crowdsource Negative Lexicon" ... or another....

• Phrases?

• Words/phrases with negation markers?

• Number of "!" occurrences?

• or...?

6

7

• Logistic regression can accommodate any arbitrary features

• Feature engineering: when you spend a lot of trying and testing
new features. Very important!! This is a place to put linguistics in,
or just common sense about your data.

9/23/14 12:06 PMexplosion blank pow

Page 1 of 1file:///Users/brendano/Downloads/explosion-blank-pow.svg

Features!
9/23/14 12:06 PMexplosion blank pow

Page 1 of 1file:///Users/brendano/Downloads/explosion-blank-pow.svg

Features!
9/23/14 12:06 PMexplosion blank pow

Page 1 of 1file:///Users/brendano/Downloads/explosion-blank-pow.svg

Features!
5.2 • CLASSIFICATION WITH LOGISTIC REGRESSION 5

test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon words 2 doc) 3
x2 count(negative lexicon words 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 ln(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(y = 1|x) = s(w ·x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.7)

p(�|x) = P(y = 0|x) = 1�s(w ·x+b)
= 0.30

5.2.2 Other classification tasks and features

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: decidingperiod

disambiguation

if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features

5.2 • CLASSIFICATION WITH LOGISTIC REGRESSION 5

test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon words 2 doc) 3
x2 count(negative lexicon words 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 ln(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(y = 1|x) = s(w ·x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.7)

p(�|x) = P(y = 0|x) = 1�s(w ·x+b)
= 0.30

5.2.2 Other classification tasks and features

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: decidingperiod

disambiguation

if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features

Negation

Add%NOT_%to%every%word%between%negation%and%following%punctuation:

didn’t like this movie , but I

didn’t NOT_like NOT_this NOT_movie but I

Das,%Sanjiv and%Mike%Chen.%2001.%Yahoo!%for%Amazon:%Extracting%market%sentiment%from%stock%
message%boards.%In%Proceedings%of%the%Asia%Pacific%Finance%Association%Annual%Conference%(APFA).
Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification
using Machine Learning Techniques. EMNLP-2002, 79—86.

[Slide: SLP3]

https://web.stanford.edu/~jurafsky/slp3/

First, we’ll discuss how LogReg works.

Then, why it’s set up the way that it is.

Application: spam filtering

Classification: LogReg (I)

● compute features (xs)

● given weights (betas)

Classification: LogReg (I)

= (count “nigerian”, count “prince”, count “nigerian prince”)

= (-1.0, -1.0, 4.0)

• Compute the dot product

• Compute the logistic function for the label probability

11

● compute the dot product

● compute the logistic function

Classification: LogReg (II)

LogReg Exercise

= (-1.0, -1.0, 4.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

= (1, 1, 1)

P(y=1 | x) =

Intuition: weighted sum of features

All linear models have this form!

Classification: Dot Product

z =
NfeatX

j=1

�jxij

Why the logistic function?

14

Logistic Function

16

10 CHAPTER 5 • LOGISTIC REGRESSION

If you work out the matrix arithmetic, you can see that the estimated score of
the first output class ŷ1 (before we take the softmax) will correctly turn out to be
w1 ·x+b1.

Fig. 5.3 shows an intuition of the role of the weight vector versus weight matrix
in the computation of the output class probabilities for binary versus multinomial
logistic regression.

Binary Logistic Regression

w

[f ⨉1]

Output
sigmoid

[1⨉f]

Input words

p(+) = 1- p(-)

…

ŷ

x

y

Input feature
vector

[scalar]

positive lexicon
words = 1

count of
“no” = 0

wordcount
=3

x1 x2 x3 xf

dessert was great

Weight vector

Multinomial Logistic Regression

W

[f⨉1]

Output
softmax

[K⨉f]

Input words

p(+)

…

y1
^ y2

^ y3
^

x

y

Input feature
vector

[K⨉1]

positive lexicon
words = 1

count of
“no” = 0

wordcount
=3

x1 x2 x3 xf

dessert was great

p(-) p(neut)

Weight
matrix

These f red weights
are a row of W
corresponding

to weight vector w3,
(= weights for class 3)

Figure 5.3 Binary versus multinomial logistic regression. Binary logistic regression uses a
single weight vector w, and has a scalar output ŷ. In multinomial logistic regression we have
K separate weight vectors corresponding to the K classes, all packed into a single weight
matrix W, and a vector output ŷ.

5.3.3 Features in Multinomial Logistic Regression

Features in multinomial logistic regression act like features in binary logistic regres-
sion, with the difference mentioned above that we’ll need separate weight vectors
and biases for each of the K classes. Recall our binary exclamation point feature x5

10 CHAPTER 5 • LOGISTIC REGRESSION

If you work out the matrix arithmetic, you can see that the estimated score of
the first output class ŷ1 (before we take the softmax) will correctly turn out to be
w1 ·x+b1.

Fig. 5.3 shows an intuition of the role of the weight vector versus weight matrix
in the computation of the output class probabilities for binary versus multinomial
logistic regression.

Binary Logistic Regression

w

[f ⨉1]

Output
sigmoid

[1⨉f]

Input words

p(+) = 1- p(-)

…

ŷ

x

y

Input feature
vector

[scalar]

positive lexicon
words = 1

count of
“no” = 0

wordcount
=3

x1 x2 x3 xf

dessert was great

Weight vector

Multinomial Logistic Regression

W

[f⨉1]

Output
softmax

[K⨉f]

Input words

p(+)

…

y1
^ y2

^ y3
^

x

y

Input feature
vector

[K⨉1]

positive lexicon
words = 1

count of
“no” = 0

wordcount
=3

x1 x2 x3 xf

dessert was great

p(-) p(neut)

Weight
matrix

These f red weights
are a row of W
corresponding

to weight vector w3,
(= weights for class 3)

Figure 5.3 Binary versus multinomial logistic regression. Binary logistic regression uses a
single weight vector w, and has a scalar output ŷ. In multinomial logistic regression we have
K separate weight vectors corresponding to the K classes, all packed into a single weight
matrix W, and a vector output ŷ.

5.3.3 Features in Multinomial Logistic Regression

Features in multinomial logistic regression act like features in binary logistic regres-
sion, with the difference mentioned above that we’ll need separate weight vectors
and biases for each of the K classes. Recall our binary exclamation point feature x5

Multiclass Logistic Regression
• Generalize to K>2 classes

• Each class has its own weight vector (across all features; e.g. BOW counts)

Multiclass Logistic Regression

• Weight vector for each class

• Prediction: dot product for each class

• Predicted probabilities: apply the softmax function to normalize

● Both compute the dot product

● NB: sum of log probs; LogReg: logistic fun.

NB vs. LogReg

● NB: learn conditional probabilities separately
via counting

● LogReg: learn weights jointly

Learning Weights

Learning Weights
● given: a set of feature vectors and labels

● goal: learn the weights.

Learning Weights

n examples; xs - features; ys - class

Learning Weights
We know:

So let’s try to maximize probability of the entire
dataset - maximum likelihood estimation

Learning Weights
We know:

So let’s try to maximize probability of the entire
dataset - maximum likelihood estimation

g(z) =
1

1 + e�z
P (y = 1 | x) = g

0

@
NfeatX

j=1

�jxij

1

A

Learning Weights
So let’s try to maximize probability of the entire

dataset - maximum likelihood estimation

Gradient ascent/descent learning

24

• Follow direction of steepest ascent. Iterate: �(new) = �(old) + ⌘
@`

@�

5.6 • GRADIENT DESCENT 15

sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.5 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. In each dimension
wi, we express the slope as a partial derivative ∂

∂wi
of the loss function. Essentially

we’re asking: “How much would a small change in that variable wi influence the
total loss function L?”

Formally, then, the gradient of a multi-variable function f is a vector in which
each component expresses the partial derivative of f with respect to one of the vari-
ables. We’ll use the inverted Greek delta symbol — to refer to the gradient, and
represent ŷ as f (x;q) to make the dependence on q more obvious:

—L(f (x;q),y) =

2

6666664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

∂
∂b L(f (x;q),y)

3

7777775
(5.26)

The final equation for updating q based on the gradient is thus

q t+1 = q t �h—L(f (x;q),y) (5.27)

5.6.1 The Gradient for Logistic Regression

In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w ·x+b)+(1� y) log(1�s(w ·x+b))] (5.28)

Cost(w,b)

w
b

Figure 5.5 Visualization of the gradient vector at the red point in two dimensions w and
b, showing a red arrow in the x-y plane pointing in the direction we will go to look for the
minimum: the opposite direction of the gradient (recall that the gradient points in the direction
of increase not decrease).

GD is a generic method for
optimizing differentiable functions —

widely used in machine learning!

Learning Weights
So let’s try to maximize probability of the entire

dataset - maximum likelihood estimation

Pros & Cons
● LogReg doesn’t assume independence

○ better calibrated probabilities

● NB is faster to train; less likely to overfit

NB & Log Reg
● Both are linear models:

● Training is different:
○ NB: weights trained independently
○ LogReg: weights trained jointly

z =
NfeatX

j=1

�jxij

Overfitting and generalization

• Overfitting: your model performs overly optimistically on training set,
but generalizes poorly to other data (even from same distribution)

• To diagnose: separate training set vs. test set.

• How did we regularize Naive Bayes and language modeling?

• For logistic regression: L2 regularization for training

27

Regularization tradeoffs

• No regularization <--------------> Very strong regularization

28

Bias Term

Logistic regression wrap-up

• Given you can extract features from your text, logistic
regression is the best, easy-to-use, method

• Logistic regression with BOW features is an excellent baseline
method to try at first

• Will be a foundation for more sophisticated models, later in course

• Always regularize your LR model

• We recommend using the implementation in scikit-learn

• Useful: CountVectorizer to help make BOW count vectors

• Next: but where do the LABELS in supervised learning come
from?

30

