Text Classification with Naive Bayes

CS 485, Spring 2024 Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485_s24/

> Brendan O'Connor College of Information and Computer Sciences

University of Massachusetts Amherst

upcoming

- Question: Can anyone access the Moodle page now? (All it has is a link to Echo360 lecture video recordings)
- Brendan's OH: **Monday, 11am-noon**, room CS 238. Starting 2/12
 - Come to discuss anything in this course or otherwise!
 - Can add alternate meetings—please ask (but I'm busy after class)
- Chloe's OH: **Tuesday**, time TBA
- HW1 released tomorrow; due in 1.5 weeks
- Tuesday, 6-7pm: Hands-on Python setup & tutorial, run by Pracha, one of your UCAs
 - Location: Hasbrouck HAS0138
 - Python installation with anaconda, and basics of the python environment.
 - How to run python with command line, and how to create parameter for command line (w and w/o argparse library).
 - How to to use Jupyter notebook.

roadmap

- Introduce text classification
- Method #1: Manually-defined rules and keywords
- Method #2: Supervised learning
 - Naive Bayes model
 - next week: logistic regression model

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label **y** (from a finite, smallish, label set)
- goal: learn a mapping function *f* from **x** to **y**

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label **y** (from a finite label set)
- goal: learn a mapping function *f* from **x** to **y**

fyi: basically every NLP problem reduces to learning a mapping function with various definitions of **x** and **y**!

problem	X	У
sentiment analysis	text from reviews (e.g., IMDB)	{positive, negative}
topic identification	documents	{sports, news, health,}
author identification	books	{Tolkien, Shakespeare, }
spam identification	emails	{spam, not spam}

... many more!

input **x**:

From European Union <info@eu.org>ක්</info@eu.org>	
Subject	
Reply to	

Please confirm to us that you are the owner of this very email address with your copy of identity card as proof.

YOU EMAIL ID HAS WON \$10,000,000.00 ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACT OUR EMAIL: CONTACT US NOW VIA EMAIL:

label y: spam or not spam

we'd like to learn a mapping f such that $f(\mathbf{x}) = \mathbf{spam}$

Demo: Keyword count classifier

- Let's consider this task: sentiment classification of movie reviews
- Can *manually defined* keyword lists be a useful indicator of text sentiment?
 - For each category, define set of words
 - Predict a category if many of its words are used
- Let's try manually defined keywords!
 - Sending link on Piazza/email

f can be hand-designed rules

• if "won \$10,000,000" in **x**, **y** = **spam**

• if "CS485" in **x**, **y** = **not spam**

what are the drawbacks of this method?

f can be learned from data

- given training data (already-labeled x,y pairs) learn f by maximizing the likelihood of the training data
- this is known as **supervised learning**

training data:

x (email text)	y (spam or not spam)	
learn how to fly in 2 minutes	spam	
send me your bank info	spam	
CS585 Gradescope consent poll	not spam	
click here for trillions of \$\$\$	spam	
ideally many more examples!		

heldout data:

x (email text)	y (spam or not spam)
CS485 important update	not spam
ancient unicorns speaking english!!!	spam

training data:

x (email text)	y (spam or not spam)
learn how to fly in 2 minutes	spam
send me your bank info	spam
CS585 Gradescope consent poll	not spam
click here for trillions of \$\$\$	spam
ideally many more examples!	

heldout data:

x (email text)	y (spam or not spam)
CS485 important update	not spam
ancient unicorns speaking english!!!	spam

learn mapping function on training data, measure its accuracy on heldout data

probability review

- random variable *X* takes value *x* with probability p(X = x); shorthand p(x)
- joint probability: p(X = x, Y = y)
- conditional probability: p(X = x | Y = y)

$$=\frac{p(X=x, Y=y)}{p(Y=y)}$$

• when does $p(X = x, Y = y) = p(X = x) \cdot p(Y = y)$?

probability of some input text

- goal: assign a probability to a sentence
 - sentence: sequence of *tokens* $p(w_1, w_2, w_3, ..., w_n)$

- $w_i \in V$ where V is the vocabulary (types)
- some constraints:

non-negativity for any $w \in V$, $p(w) \ge 0$

probability distribution, sums to 1

$$\sum_{w \in V} p(w) = 1$$

toy sentiment example

- vocabulary V: {i, hate, love, the, movie, actor}
- training data (movie reviews):
 - i hate the movie
 - i love the movie
 - i hate the actor
 - the movie i love
 - i love love love love the movie
 - hate movie
 - i hate the actor i love the movie

labels: positive negative

bag-of-words representation

i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1
equivalent i	representation to:

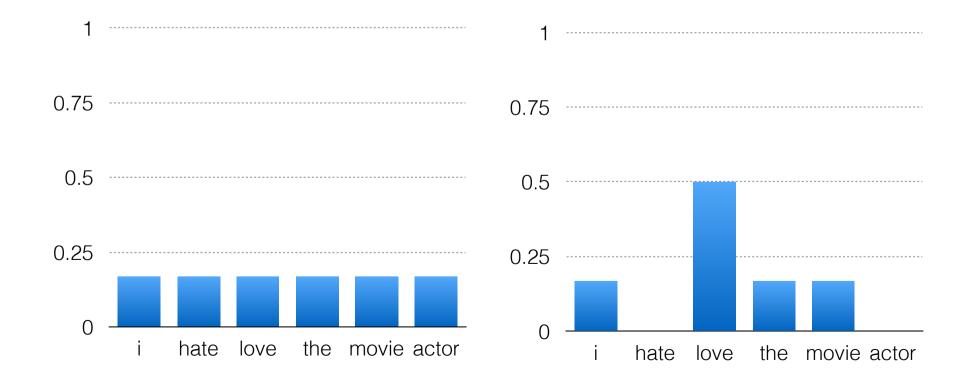
actor i i the the love movie hate

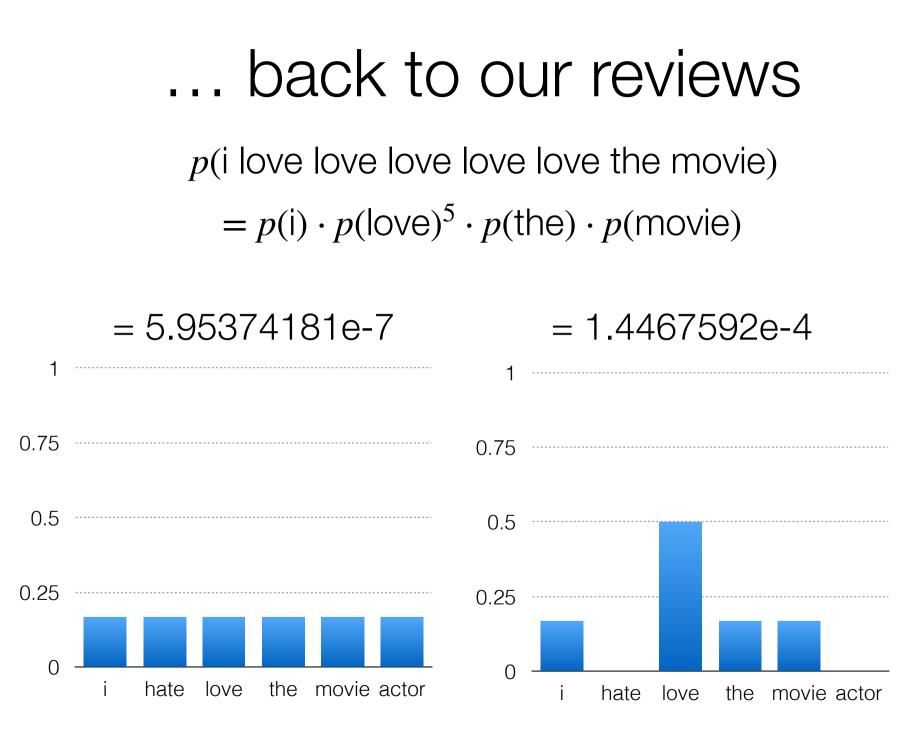
naive Bayes

• assumption: each word is independent of all other words, conditional on document label

- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- goal: infer probability distribution that generated the labeled data for each label

which of the below word distributions looks like one found in positive reviews?





logs to avoid underflow

 $p(w_1) \cdot p(w_2) \cdot p(w3) \dots \cdot p(w_n)$ can get really small esp. with large *n*

$$\log \prod p(w_i) = \sum \log p(w_i)$$

 $p(i) \cdot p(love)^{5} \cdot p(the) \cdot p(movie) = 5.95374181e-7$ $\log p(i) + 5 \log p(love) + \log p(the) + \log p(movie)$ = -14.3340757538

[This implementation trick is very common in ML and NLP]

class conditional probabilities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

$$p(y \mid x) = \frac{p(y) \cdot P(x \mid y)}{p(x)}$$

our predicted label is the one with the highest posterior probability, i.e.,

class conditional probabilities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

posterior

$$p(y \mid x) = \frac{p(y) \cdot P(x \mid y)}{p(x)}$$

our predicted label is the one with the highest posterior probability, i.e.,

$$\hat{y} = \arg \max_{y \in Y} p(y) \cdot P(x \mid y)$$

what happened to the denominator???

argmax notation

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love the movie
- hate movie
- i hate the actor i love the movie

p(y) lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

label y	count	p(Y=y)	log(p(Y=y))
POS	3	0.43	-0.84
NEG	4	0.57	-0.56

computing the likelihood...

p(X | y=POS)

p(X | y=NEG)

word	count	p(wly)	word	count	p(wly)
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44	love	1	0.06
the	3	0.19	the	4	0.22
movie	3	0.19	movie	3	0.17
actor	0	0.00	actor	2	0.11
total	16		total	18	

p(X | y=POS)p(X | y=NEG)

word	count	p(wly)	word	count	p(wly)
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44	love	1	0.06
the	3	0.19	the	4	0.22
movie	3	0.19	movie	3	0.17
actor	0	0.00	actor	2	0.11
total	16		total	18	

new review X_{new}: love love the movie

$$\log p(X_{\text{NEW}} | \text{POS}) = \sum_{w \in X_{\text{NEW}}} \log p(w | \text{POS}) = -4.96$$
$$\log p(X_{\text{NEW}} | \text{NEG}) = -8.91$$

posterior probs for Xnew

$\log p(\text{POS} | X_{\text{NeW}}) \propto \log P(\text{POS}) + \log p(X_{\text{NeW}} | \text{POS})$ = -0.84 - 4.96 = -5.80

 $\log p(\text{NEG} | X_{\text{NEW}}) \propto -0.56 - 8.91 = -9.47$

What does NB predict?

Naive Bayes X-doc text

W- more

Assumptions

PC-y=SCUBA(X)

Prov for class: P(y) $Likelikod for text: <math>P(x/y) = \Pi_{i=1}^{k} P(w_i/y)$

- Vestor Which Steps to use
 - 1. Training: learn p(y) and p(w|y) parameters for all classes and words, based on their counts in labeled training data

• 2. Prediction: given learned parameters, for new doc, use Bayes Rule to predict posterior (never) $(\chi/\gamma^{\overline{\nu}})$ probability of class labels

what if we see no positive training documents containing the word "awesome"?

p(awesome | POS) = 0p(mare 15 avesure (P05)= = p(mare[+)p(rs]+)p(ancone[+)

what happens if we do add- α smoothing as α increases?

Example: Training

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

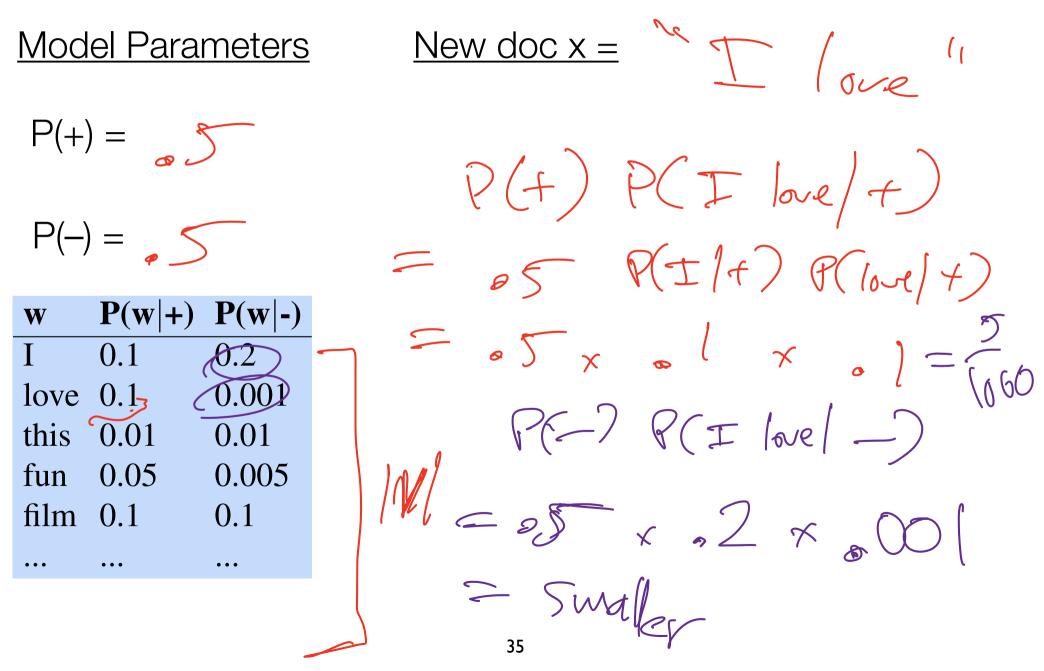
P(y=+)=2

 $P(\gamma = -) = = =$

Add-1

 $p(\text{predictable}) + = \frac{0+1}{9+\chi[v]} = \frac{1}{29}$

Example: Prediction



Other details

- Binarization "I lare lare lare lare "= r(I)/p(bre)
 - Issue: overcounting word repetitions
 - Solution:

Prefled a nort part is just /

- Negation handling
 - Issue:
 - Solution: heuristic

Evaluation

· ned et

- Must assess accuracy on held-out data.
 - Train/test split
 - (Alternative: cross-validation)

Train/dev/test split

Train Set

 Must tune hyperparameters (e.g. pseudocount) on a "development" or "tuning" set.

Yarn ms

Test

(x, y)

Se-+

· - - (X. V)

