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upcoming

e Question: Can anyone access the Moodle page now? (All it has is a
link to Echo360 lecture video recordings)

e Brendan's OH: Monday, 11am-noon, room CS 238. Starting 2/12
» (Come to discuss anything—in this course or otherwise!
e (Can add alternate meetings—please ask (but I'm busy after class)

e (Chloe's OH: Tuesday, time TBA

e HW1 released tomorrow; due in 1.5 weeks

e [uesday, 6-/pm: Hands-on Python setup & tutorial,
run by Pracha, one of your UCAS

e | ocation: Hasbrouck HAS0138

Python installation with anaconda, and basics of the
python environment.

 How to run python with command line, and how to create
parameter for command line (w and w/o argparse library).

« How to to use Jupyter notebook.



roadmap

e |ntroduce text classification

e Method #1: Manually-defined rules and
keywords

e Method #2: Supervised learning
* Naive Bayes model
* next week: logistic regression model



text classification

® nput: some text x (e.g., sentence, document)

e output: a label y (from a finite, smallish, label
set)

® goal: learn a mapping function f from x to y



text classification

® nput: some text x (e.g., sentence, document)
® output: a label y (from a finite label set)
® goal: learn a mapping function f from xto y

fyi: basically every NLP problem
reduces to learning a mapping function
with various definitions of x and y!



problem X

text from reviews (e.g.,

sentiment analysis {positive, negative}

IMDB)
topic identification documents {sports, news, health, ...}
author identification books lolkien, S.hé}tkespeare,
spam identification emails {spam, not spam}

... many more!






Please confirm to us that you are the owner of this very email address
with your copy of identity card as proof.

YOU EMAIL ID HAS WON $10,000,000.00 ON THE ONGOING EUROPEAN UNION

COMPENSATION FOR SCAM VICT IL:
CONTACT US NOW VIA EMAIL: NOW TO CLAIM YOUR COMPENSATION

label y: spam or not spam

we’d like to learn a mapping f such that
f(x) = spam




Demo: Keyword count classifier

e | et's consider this task:
sentiment classification of movie reviews

e (Can manually defined keyword lists be a
useful indicator of text sentiment?
* [or each category, define set of words
e Predict a category if many of its words are used
o | et's try manually defined keywords!
Sending link on Piazza/emall



f can be hand-designed rules

e if “won $10,000,000” in X, y = spam
o if “CS485” in X, Yy = not spam

what are the drawbacks of this method?



f can be learned from data

® given training data (already-labeled x,y pairs)
learn f by maximizing the likelihood of the
training data

e this is known as supervised learning



training data:

X (email text) y (spam or not spam)
learn how to fly in 2 minutes spam
send me your bank info spam
CS585 Gradescope consent poll not spam
click here for trillions of $$$ spam

... ideally many more examples!

heldout data:

X (email text) y (spam or not spam)

CS485 important update not spam

ancient unicorns speaking english!!! spam



training data:

X (email text) y (spam or not spam)
learn how to fly in 2 minutes spam
send me your bank info spam
CS585 Gradescope consent poll not spam
click here for trillions of $$$ spam

... ideally many more examples!

heldout data:

X (email text) y (spam or not spam)
CS485 important update not spam
ancient unicorns speaking english!!! spam

learn mapping function on training data,
measure Its accuracy on heldout data
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orobabllity review

random variable X takes value x with
probability p(X = x) ; shorthand p(x)

joint probability: p(X =x,Y =y)
conditional probability: p(X =x| Y =y)

=p(X=x,Y=y)
p(Y =y)

when does p(X=x,Y=y)=pX=x)-p(Y =y)?



probability of some input text

® goal: assign a probability to a sentence

e sentence: sequence of tokens
pW, Wy, wa, ..., W,)

e w; €V where Vis the vocabulary (types)

® some constraints:
non-negativity forany w € V, p(w) > 0

probabllity _
distribution, ZP(W) =1

sums to 1 wevV



toy sentiment example

e vocabulary V: {i, hate, love, the, movie, actor}
® training data (movie reviews):

the movie | love
| love love love love love the movie

nate the movie
ove the movie

nate the actor labels:

positive
negative

hate movie
| hate the actor | love the movie



bag-of-words representation

| hate the actor i love the movie



bag-of-words representation

| hate the actor i love the movie

word count
| 2
hate
love 1
the 2
movie 1
actor 1



bag-of-words representation

| hate the actor | love the movie

word count
i 2
hate 1
love 1
the 2
movie 1
actor 1

equivalent representation to:
actor i1 | the the love movie hate
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naive Bayes

e assumption: each word is independent of all
other words, conditional on document label

e given labeled data, we can use naive Bayes
to estimate probabilities for unlabeled data

e goal: infer probabillity distribution that
generated the labeled data for each label
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which of the below word distributions
looks like one found in positive reviews?

1 o
075 N
0.5
.05

11111l

i hate love the movie actor i hate love the movie actor
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... back to our reviews

p(i love love love love love the movie)

= p(i) - p(love)’ - p(the) - p(movie)

= 0.95374181e-7 = 1.4467592e-4
T e
Q.75 o 075
0.5 e
O '
NN

i hate love the movie actor i hate love the movie actor
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logs to avoid undertlow

pwy) - p(wy) - pW3) ... - p(w,)
can get really small esp. with large n

log[ [p(w) = D log p(w))

p(i) - p(love)’ - p(the) - p(movie) = 5.95374181e-7
log p(i) + 5log p(love) + log p(the) + log p(movie)
=-14.3340757538

[This implementation trick is very common in ML and NLP]



class conditional probabillities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

p(y) - P(x|y)
p(x)

our predicted label is the one with the highest
posterior probabillity, I.e.,

piy|x) =
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class conditional probabillities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

| prior likelihood
poseior p(y) - P(x| )
p(y|x) =
p(x)

our predicted label is the one with the highest
posterior probabillity, I.e.,

y = arg max p(y) - P(x|y)
yeY

what happened to

the denominator???
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argmax notation
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computing the prior...

nate the movie
ove the movie

nate the actor

the movie I love

| love love love love love the movie
hate movie

| hate the actor i love the movie

p(y) lets us encode inductive bias about the labels
we can estimate it from the data by simply counting...

label y count p(Y=y) log(p(Y=y))
POS 3 0.43 -0.84

NEG 4 0.57 -0.56
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computing the likelihood...

p(X | y=POS) p(X | y=NEG)

word count p(wly) word count p(wly)
| 3 0.19 i 4 0.22
hate 0 0.00 hate 4 0.22
love / 0.44 love 1 0.06
the 3 0.19 the 4 0.22
movie 3 0.19 movie 3 0.17
actor 0 0.00 actor 2 0.11

total 16 total 18

28



p(X | y=POS) p(X | y=NEG)

word count p(wly) word count p(w |y)
| 3 0.19 | 4 0.22
hate 0 0.00 hate 4 0.22
love / 0.44 love 1 0.06
the 3 0.19 the 4 0.22
movie 3 0.19 movie 3 0.17
actor 0 0.00 actor 2 0.11
total 16 total 18

new review Xnew: love love the movie

log p(Xnew POS) = )’ logp(w|POS) = —4.96

WEXneW
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posterior probs for Xnew

log p(POS | Xpnew) « log P(POS) + log p(Xpew | POS)
=—0.84 -496 = —5.80

What does NB predict?
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dat. corsﬂmgd
Nalve Bayes 7% L doer
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what if we see no positive training documents
containing the word “awesome”?

p(awesome | POS) = 0
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Add-a (pseudocount) smoothing
N Leladre Frop. Exfomate C W

unsmoothed P(w;|y) =

————— Wevw. W, ﬂwbl@
——_ =’ ("n\y
< N

smoothed Pow:|y) = count(w;, y) + a
W,
Y LZ ey count(w, y) + a| V]|

oL = / [[// %’

what happens if we do
add-a smoothing as o increases?
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Example: Training
Cat Documents Al Y- [

Training -  just plain boring
entirely predictable and lacks energy
no surprises and very few laughs

+ [verypowerful
+ /fhmﬁast/fan/ﬁ'[m/(ﬂ (the.sammen
Test ?  predictable with no fun

P(}Z/")"; L‘ﬁ Q(jf /> :;
<
F(fﬂa(tcr&qu%)’; O+/] A

-

q + ] 27
(-
3 20




Example: Prediction

Model Parameters New doc X = T\ /

P(+) =
= 7@‘) PCT ove/ff)
PO =_ < —

= o5 Wxle) ?(/M/vé)
w  P(wl+) P(w|-)

Jeie

I 0.1 - T e x [ ¥ o
love 0., 0.0 | = \(\%O
this 0.0 0.0l K~/ QT loe| —)
fun 0.05  0.005 Ml//
film 0.1 0.1 =95 . .7 « QO(
&



Other detalls
o - ;
® Binarization ) < e el ﬁ(r%ﬁmé]

® |ssue: overcounting word repetitions
e Solution:

PWQM > T et |

p—

® Negation handling
® [ssue:
e Solution: heuristic
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0 S
: e [
Evaluation % Js. 4 25,

e Must assess accuracy on held-out data.

e Train/test split
e (Alternative: cross-validation)

e Must tune hyperparameters (e.g. Qseudo@nt

on a "developmen :j/mmug/% (
e Train/dev/test split 9)
C—s p» J // Q@m WAS f’(/“-/;

-

[ ) n >< Sc({— }I_T\eﬂ et \

6%7) - By /N> T -
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