Text Classification with Naive Bayes

CS 485, Spring 2024
Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485 s24/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

upcoming

- Question: Can anyone access the Moodle page now? (All it has is a link to Echo360 lecture video recordings)
- Brendan's OH: Monday, 11am-noon, room CS 238. Starting 2/12
- Come to discuss anything - in this course or otherwise!
- Can add alternate meetings - please ask (but l'm busy after class)
- Chloe's OH: Tuesday, time TBA
- HW1 released tomorrow; due in 1.5 weeks
- Tuesday, 6-7pm: Hands-on Python setup \& tutorial, run by Pracha, one of your UCAs
- Location: Hasbrouck HAS0138
- Python installation with anaconda, and basics of the python environment.
- How to run python with command line, and how to create parameter for command line (w and w/o argparse library).
- How to to use Jupyter notebook.

roadmap

- Introduce text classification
- Method \#1: Manually-defined rules and keywords
- Method \#2: Supervised learning
- Naive Bayes model
- next week: logistic regression model

text classification

- input: some text \mathbf{x} (e.g., sentence, document)
- output: a label \mathbf{y} (from a finite, smallish, label set)
- goal: learn a mapping function from \mathbf{x} to \mathbf{y}

text classification

- input: some text \mathbf{x} (e.g., sentence, document)
- output: a label \mathbf{y} (from a finite label set)
- goal: learn a mapping function f from \mathbf{x} to \mathbf{y}
fyi: basically every NLP problem reduces to learning a mapping function with various definitions of \mathbf{x} and \mathbf{y} !
sentiment analysis
text from reviews (e.g., IMDB) \{positive, negative\}
topic identification
author identification
books documents
emails
\{sports, news, health, ...\}
\{Tolkien, Shakespeare, ...\}
\{spam, not spam\}
... many more!

input \mathbf{x} :

From European Union info@eu.org§
Subject
Reply to

Please confirm to us that you are the owner of this very email address with your copy of identity card as proof.

YOU EMAIL ID HAS WON $\$ 10,000,000.00$ ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACI OUR EMAIL: CONTACT US NOW VIA EMAIL:

NOW TO CLAIM YOUR COMPENSATION
label \mathbf{y} : spam or not spam

$$
\begin{aligned}
& \text { we'd like to learn a mapping } f \text { such that } \\
& \qquad f(\mathbf{x})=\text { spam }
\end{aligned}
$$

Demo: Keyword count classifier

- Let's consider this task: sentiment classification of movie reviews
- Can manually defined keyword lists be a useful indicator of text sentiment?
- For each category, define set of words
- Predict a category if many of its words are used
- Let's try manually defined keywords!
- Sending link on Piazza/email

f can be hand-designed rules

- if "won $\$ 10,000,000$ " in $\mathbf{x}, \mathbf{y}=\mathbf{s p a m}$
- if "CS485" in $\mathbf{x}, \mathbf{y}=$ not spam
what are the drawbacks of this method?

f can be learned from data

- given training data (already-labeled $\mathbf{x , y}$ pairs) learn f by maximizing the likelihood of the training data
- this is known as supervised learning

training data:

x (email text)
learn how to fly in 2 minutes
send me your bank info
CS585 Gradescope consent poll
click here for trillions of \$\$
.. ideally many more examples!
y (spam or not spam)

spam

```
spam
```

not spam
heldout data:

CS485 important update ancient unicorns speaking english!!!
not spam
spam

training data:

x (email text)
learn how to fly in 2 minutes
send me your bank info
CS585 Gradescope consent poll
click here for trillions of $\$ \$ \$$
... ideally many more examples!

heldout data:

y (spam or not spam)
spam
spam
not spam

\mathbf{x} (email text)	\mathbf{y} (spam or not spam)
CS485 important update	not spam
ancient unicorns speaking english!!!	spam

learn mapping function on training data, measure its accuracy on heldout data

probability review

- random variable X takes value x with probability $p(X=x)$; shorthand $p(x)$
- joint probability: $p(X=x, Y=y)$
- conditional probability: $p(X=x \mid Y=y)$

$$
=\frac{p(X=x, Y=y)}{p(Y=y)}
$$

- when does $p(X=x, Y=y)=p(X=x) \cdot p(Y=y)$?

probability of some input text

- goal: assign a probability to a sentence
- sentence: sequence of tokens

$$
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)
$$

- $w_{i} \in V$ where V is the vocabulary (types)
- some constraints:
non-negativity for any $w \in V, p(w) \geq 0$
$\begin{gathered}\begin{array}{c}\text { probability } \\ \text { distribution, } \\ \text { sums to 1 }\end{array}\end{gathered} \quad \sum_{w \in V} p(w)=1$

toy sentiment example

- vocabulary V : $\{i$, hate, love, the, movie, actor\}
- training data (movie reviews):
- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
labels:
positive negative
- hate movie
- i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

equivalent representation to: actor $i i$ the the love movie hate

naive Bayes

- assumption: each word is independent of all other words, conditional on document label
- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- goal: infer probability distribution that generated the labeled data for each label

which of the below word distributions looks like one found in positive reviews?

... back to our reviews

 p (i love love love love love the movie) $=p(\mathrm{i}) \cdot p(\text { love })^{5} \cdot p$ (the) $\cdot p($ movie $)$$$
=5.95374181 \mathrm{e}-7 \quad=1.4467592 \mathrm{e}-4
$$

0.75

logs to avoid underflow

$p\left(w_{1}\right) \cdot p\left(w_{2}\right) \cdot p(w 3) \ldots \cdot p\left(w_{n}\right)$
can get really small esp. with large n
$\log \prod p\left(w_{i}\right)=\sum \log p\left(w_{i}\right)$
$p($ ($) \cdot p(\text { love })^{5} \cdot p$ (the) $\cdot p($ movie $)=5.95374181 \mathrm{e}-7$
$\log p$ (i) $+5 \log p$ (love) $+\log p$ (the) $+\log p$ (movie)
$=-14.3340757538$
[This implementation trick is very common in ML and NLP]

class conditional probabilities

Bayes rule (ex: $x=$ sentence, $y=$ label in $\{p o s$, neg\})

$$
p(y \mid x)=\frac{p(y) \cdot P(x \mid y)}{p(x)}
$$

our predicted label is the one with the highest posterior probability, i.e.,

class conditional probabilities

Bayes rule (ex: $x=$ sentence, $y=$ label in \{pos, neg\})

$$
\begin{aligned}
& \text { prior likelihood } \\
& p(x)
\end{aligned}
$$

our predicted label is the one with the highest posterior probability, i.e.,
$\hat{y}=\arg \max p(y) \cdot P(x \mid y)$

$$
y \in Y
$$

what happened to
the denominator???

argmax notation

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
- hate movie
- i hate the actor i love the movie $p(y)$ lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

label y	count	$\mathrm{p}(\mathrm{Y}=\mathrm{y})$	$\log (\mathrm{p}(\mathrm{Y}=\mathrm{y}))$
POS	3	0.43	-0.84
NEG	4	0.57	-0.56

computing the likelihood...

$$
p(X \mid y=P O S)
$$

$p(X \mid y=N E G)$

word	count	$\mathrm{p}(\mathrm{w} \mid \mathrm{y})$
i	4	0.22
hate	4	0.22
love	1	0.06
the	4	0.22
movie	3	0.17
actor	2	0.11
total	$\mathbf{1 8}$	

$p(X \mid y=P O S)$
$p(X \mid y=N E G)$

word	count	$p(w \mid y)$	word	count	$p(w \mid y)$
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44		love	1
the	3	0.19	the	4	0.06
movie	3	0.19	movie	3	0.22
actor	0	0.00	actor	2	0.17
total	$\mathbf{1 6}$		total	$\mathbf{1 8}$	

new review $X_{\text {new }}$: love love the movie
$\log p\left(X_{\text {new }} \mid \mathrm{POS}\right)=\sum_{w \in X_{\text {new }}} \log p(w \mid \mathrm{POS})=-4.96$
$\log p\left(X_{\text {new }} \mid\right.$ NEG $)=-8.91$

posterior probs for $X_{\text {new }}$

$$
\begin{gathered}
\log p\left(\mathrm{POS} \mid X_{\text {new }}\right) \propto \log P(\mathrm{POS})+\log p\left(X_{\text {new }} \mid \mathrm{POS}\right) \\
=-0.84-4.96=-5.80
\end{gathered}
$$

$$
\log p\left(\text { NEG } \mid X_{\text {new }}\right) \propto-0.56-8.91=-9.47
$$

What does NB predict?

Naive Bayes

$$
\begin{aligned}
& y-d o c c^{\text {lass Ah al }} \\
& x-d o x \text { text } \\
& w \text {-word }
\end{aligned}
$$

- Assumptions

Proa for class: $P(y)$
cikelibard for text: $P(x / y)=\prod_{i=1}^{N_{\text {ak }}} P\left(w_{i} \mid y\right)$

- Steps to use vector $\mid V_{x} K$
- 1. Training: learn $p(y)$ and $p(w \mid y)$ parameters for all classes and words, based on their counts in labeled training data
- 2. Prediction: given learned parameters, for new doc, use Bayes Rule to predict pōstērior probability of class labels
$P(y=5 \cos A / x)$
what if we see no positive training documents containing the word "awesome"?

$$
p(\text { awesome| POS })=0
$$

$$
\begin{aligned}
& p(\text { mare is awesine } / p O S)= \\
& =p(\text { mare } \mid t) p(B 1+) p(\text { anarne } 1+)
\end{aligned}
$$

$$
=0
$$

Add- α (pseudocount) smoothing

"Relative Free z: Estimate" 'count (w ww
$\operatorname{count}\left(w_{i}, y\right)+\alpha$
smoothed $P\left(w_{i} \mid y\right)=$

$$
\alpha=\frac{1}{|v|} \sum_{w \in V} \operatorname{count}(w, y)+\alpha|V|
$$

what happens if we do add- α smoothing as α increases?

Example: Training

$$
\begin{aligned}
& P(y=+)=\frac{2}{5} \quad P(y=-)=\frac{3}{5} \\
& P(\text { prodictury) }+)=\frac{0+1}{\frac{0+1 v \mid}{\alpha+20}}=\frac{1}{29}
\end{aligned}
$$

Example: Prediction

Model Parameters

$$
P(+)=\infty
$$

$$
P(-)=.5
$$

$$
=0 S P(I \mid t) P(\operatorname{love} \mid t)
$$

Other details

$$
\text { "I lac lave lore" }=\mu(I)[p(\text { lo r })]^{3}
$$

- Binarization
- Issue: overcounting word repetitions
- Solution:
Pretend a now wat is jot
- Negation handling
- Issue:
- Solution: heuristic

O-eusing tata sets

