
Homework 2
(multiple due dates; see below)

CS 485, UMass Amherst, Fall 2024

Overview: Annotation and Modeling Experiment

This assignment consists of designing an annotation task, doing annotations yourself, then analyz-
ing and experimenting with annotations jointly collected among a group. Note there are multiple
due dates:

• Phase 0: Due Tue Oct 1, as group submission: “Group Formation.” Submit your groups to
Gradescope, size 2-3. We need this just so we can send you your group’s dataset. If you need
help finding a group, please post on Piazza or find a group in class on Tuesday!

• Phase 1: Due Monday Oct 7, as group submission: Submit your group’s annotation guide-
lines AND all completed individual annotations to Gradescope. Late submissions are not
allowed.

• Phase 2: Due Friday Oct 11, as individual submission: Submit your PDF with answers and
analysis/experiment results from the last section below.

In Phase 1, as a group you’ll inspect a “reference set” of tweets, and design an annotation
task that is interesting to you. You should pilot it working together, and crucially, write anno-
tation guidelines. Next (still Phase 1), a group will receive its “target set” of 250 tweets, where
each member INDIVIDUALLY will annotate it for the task the group developed. The annotations
must be done without communicating among group members. Once done, the group collects its
annotations and submits them plus the guidelines to Gradescope.

In Phase 2, all group members use their collected dataset, but most of your work will be done
individually like a traditional individual homework assignment. You’ll analyze agreement rates,
diagnose issues, aggregate results to create a final dataset for yourself, and perform NLP classi-
fication experiments on it. (Note the assignment also includes some math/conceptual questions
that are totally separate—you can do these any time!)
Many more details on these steps are spelled out in the next section for Problem 1.

Tasks: Every group will define their own unique task. Therefore the researcher will have to
draw up guidelines and explanations to allow their annotators to do a good job at reliably identi-
fying whatever categories the researcher has a goal of collecting.

It’s OK if this is hard: Designing an annotation task, and collecting annotations, is tricky. This
assignment is small-scale as far as annotation projects go, but hopefully it illustrates the challenges
that underlie it.

Datasets. We have collected samples of publicly available English sentences for all your ex-
periments. (The data is collected from social media, and may include offensive and inappropriate
content.) They are available at:

1

https://drive.google.com/drive/u/1/folders/1p0HJBVWsBXt2EuD4eMaAtcG1FqCvHqOx

There are two types of datsets:

• Reference sets: You can just look at these any time. They’re intended for groups to read
through to help define their task. You could also use them as unlabeled data later on if you
want.

• Target sets: Each group will receive one target set of 250 tweets, used for individual annota-
tions then later analysis.

The format is JSON; see the Python package “json”. We replace hyper links with ”[link]”. The text
is encoded as UTF-8.

1 Phase 1: Task design and annotation collection

1.1 Task design

As a group, conceptualize and design a classification task for the data. Take a look at some refer-
ence data. What’s an interesting, but also reasonable way to annotate the classification problem
for this data? It can be any binary or multiclass classification problem. Here are a few examples:

• Does the sentence contain humor? Sarcasm?

• Does the sentence contain a location?

• Does the sentence mention an entity like person/organization name?

• Does the sentence contain abbreviations?

• Is the sentence about a certain specific topic: politics, movie, campus life, . . .

• Is the sentence written in the passive voice?

A few guidelines:

• You must have a fixed set of categories. Please use no more than 5 categories. Fewer tends
to be easier to annotate.

• Do not have any categories that seem to be rare—say, less than 5% incidence. Annotators
tend to find rare classes difficult to annotate.

• For many category systems, it’s often useful to have a catch-all category like “Not Applica-
ble” or “Other” or “Unknown.” Of course, those three category labels can mean different
things in different situations, or you might even need more than one of them. (For sentiment,
“neutral” is a kind of catch-all.)

• Don’t do a really simple problem with an obvious shallow textual indicator, like “Is the
sentence a question?” or “Does this sentence contain more than 10 words?” This violates
the spirit that we want you to do a real NLP problem. However, seemingly simple tasks
might be more subtle than they first appear. For example, “Does this sentence contain an
emoticon?” can sometimes be hard, if there are creative or complex ASCII-art emoticons
(e.g. horizontal emoticons).

2

https://drive.google.com/drive/u/1/folders/1p0HJBVWsBXt2EuD4eMaAtcG1FqCvHqOx

Write annotation guidelines for your task. These are instructions you all will use as annotators.
When you work as an annotator, you have to read the guide and rely on it when doing annotations.
It should be a written document, perhaps a half page long (or more if you think necessary). The
guidelines should include:

• A list of the categories under consideration, including the exact string an annotators should
use when typing into a spreadsheet.

• Descriptions of the categories and what they mean.

• Example sentences that are illustrative of the categories.

• A discussion of tricky corner cases, and criteria to help the annotator decide them. If you
look at the data and think about how annotators could do the task, you will realize a bunch
of such issues!

You are in charge of defining your task! This process of boiling it down to something specific,
actionable, and thus measurable, called operationalization. Every group will be defining a different
task, so feel free to make yours specific or unique in some way. But you will want to make it clear
and as straightforward as possible for your annotators to do the task.

Deliverable: Include a copy of your annotation guidelines in your Phase 1 submission.

1.2 Annotation collection

It’s time to collect annotations! This part is done individually, though remember you’ll have to
gather everyone’s annotations together for submission. Remember, each group member now per-
forms this individually, and on the target set. Please collect your annotations through a Google
Sheets document with three columns:

1. Text

2. Label from annotator

3. Notes from annotator

Each annotator should have a separate sheet, each with the exact same texts in the text field.
Annotators should annotate independently of each other—only use the annotation guidelines
document at this point.

(If you like, you could use other software than a spreadsheet for this. It may not be worth the
trouble though.)

Deliverable: In both your Phase 1 and Phase 2 submissions, include the separate CSV files for
each annotator.

2 Phase 2: Annotations analysis

For this phase of work, you are responsible for writing it up as a report, which you submit indi-
vidually.

3

2.1 Annotator Feedback

This is the only part of Phase 2 that has a group component. Do this ASAP after you’ve finished
annotations.

Meet with your group and discuss together what general feedback you all have. What worked
well or what didn’t? Look at your “annotator notes” column and compare them to other members’
notes to help spur discussion. Take notes on your meeting.

Deliverable: In your writeup, summarize the important issues in the annotation task. Did
you or the other annotators find it easy or hard? What were the biggest issues? Did the annotators
have similar or different experiences? What would you do differently if you were to revise your
task?

If this were a real annotation project, what you just did would be considered the first pilot ex-
periment, and you would work more to iteratively refine your guidelines. But for this homework,
one round is enough!

2.2 Inter-annotator agreement

Now you’ll conduct quantitative analysis of the agreement between annotators.
Deliverable: in your writeup, report:

1. The confusion matrix between the two annotators. Rows = category choices for Annotator1,
Columns = category choices by Annotator2, Cells = the number of sentences with that pair
of labels from the two annotators. The categories should be in the same order for both rows
and columns, so the diagonal cells correspond to cases with agreement.

2. The observed agreement rate, the random chance agreement rate, and chance-adjusted agree-
ment rate (kappa). Explain the calculations you conduct.

If your group is larger than two, calcuate the confusion matrix by summing across all pairs of
annotators. (Technically the adjusted agreement rate will then be called “Fleiss’ kappa.”)

2.3 Aggregate to final dataset

Create the final annotated dataset, by combining the sets of annotations. For cases where anno-
tators agree, you should just use that label. But where they disagree, you will have to adjudicate
and decide who’s right—you could take a majority vote if there’s no tie, or inspect it yourself to
make a final decision.

Deliverable: What principles (if any) did you use to make these decisions? (Explain in your
writeup). Also, include a copy of your final dataset in CSV format, as ‘final.csv’ in your code/data
submission.

3 Phase 2 continued: Conceptual questions

Not data related, but questions are also part of your Phase 2 submission. There’s no need to wait
for annotations to do these—try starting early!

4

3.1 Logistic regression learning

3.1.1

We’ll examine the gradient of logistic regression. Assume only two features, x1 and x2, thus with
parameter weights β1 and β2. Let ` be the logistic regression log-likelihood for a single example
that happens to have ground-truth label y = 1:

`(β) = log pβ(y = 1 | x)

where pβ(y = 1 | x) = g(β1x1 + β2x2) when g(z) is the logistic sigmoid function.
Derive and simplify ∂`/∂β1, the partial derivative of the log-likelihood with respect to param-

eter β1. Simplify it into a form that includes p(y = 1 | x), which we’ll use to aid our intuition.1

3.1.2

One gradient-based learning algorithm is called Stochastic Gradient Descent, where you calculate
the parameter gradient for a single example, then immediately update. For the parameter β1 and
this example, the SGD update rule2 is

βnew
1 = βold

1 +
∂`

∂β1

Say feature 1 is a document’s count of the word “cow,” and in the current document, “cow” does
not appear at all. How will β1, the weight for “cow,” get updated? Intuitively, why does this make
sense?

3.1.3

Say “cow” appears once in some document with ground-truth y = 1, and the LR probabilistic
prediction is p(y = 1 | x) = 0.6. How does the “cow” weight get updated?

3.1.4

Say “cow” appears once in some document with ground-truth y = 1, and the LR probabilistic
prediction is p(y = 1 | x) = 0.999. How does the “cow” weight get updated? Intuitively, does this
make sense compared to the previous update under a prediction of 0.6? Explain any implications
for your intuitions about the derivative.

3.2 Softmax and Sigmoid

[INLP ch. 3, #2.] Prove that softmax and sigmoid functions can be made equivalent when the
number of possible labels is 2. Specifically, for any weight matrix A and vector z, show how to
construct a weight vector θ such that the first element of the softmax output matches the sigmoid
output:

[S(Az)]1 = σ(θ · z)
1Hint: Brendan thinks the sigmoid form g(z) = ez/(1 + ez) is easier to work with than 1/(1 + e−z) only because

he’s bad at negative signs when doing calculus. YMMV!
2Assuming learning rate of 1.

5

where θ · z is a dot product, and where S(x) is the softmax function, which inputs and outputs
vectors of length n, and the kth element of the output is

[S(x)]k =
exk∑n
i=1 e

xi

[Hint: if you’re stuck getting started, try defining the dimensionality of all the relevant variables
to make sure the formulas work; this may help you understand the role each one is playing. It can
help to sketch out an example for yourself as well. Then if you give clear and careful definitions
in your answer, it will be stronger and easier to follow.]

3.3 Precision and recall: class distribution

Imagine you have a classifier and its outputs on a bunch of data, with some precision and recall.
Now imagine you add a bunch of very easy negative examples to the dataset, and your classifier
correctly predicts them as negative. How do accuracy, precision, and recall change? What does
this tell us about the nature of these three metrics?

4 Phase 2 continued: NLP experiments

OK great, you have some labeled data. What about NLP modeling?
Conduct experiments to build and test classifiers on your dataset. This will be a little difficult,

since it is very small; fancier machine learning methods may not work well.
Split your dataset into train and test splits by simply dividing it in half. (For extra credit, try

using cross-validation, which is better in this environment, but more annoying to use properly.)

4.1 BOW LogReg

Create a logistic regression model based on features of the presence/count of words. (Word counts
aren’t much different than word presence indicators, since sentences we provide are so short.)

4.1.1 Feature preproc.

Describe the features and preprocessing you do. You probably want to clean things a bit more
beyond simply lowercasing the words. Also, choose a normalization method to normalize the
features before using them for training the model. Justify your decisions. And of course, describe
any hyperparameter tuning or selection that you conducted.

4.1.2 Results

Report overall accuracy, as well as the precision and recall for each class.
We recommend you use the scikit-learn version of LogisticRegression with L2 regularization,

and probably with DictVectorizer to aid construction of the feature vectors.

4.1.3 Model insight: parameters

Look at your features’ weights. Show the top-10 highest weighted words for each category. What
do they indicate, if anything?

6

4.1.4 Model insight: worst mistakes

Split the data in half; train on one half and take the model’s probabilistic predictions on the other
half. Look at examples your model got wrong, and choose the 3 examples with highest model
confidence in that wrong answer (try sorting by confidence; e.g. python list “.sort(key=...)“ or
numpy array “.order()“). For example, where y∗ is the gold standard label, and ŷ is the model
prediction ŷ = argmaxk p(y = k | x), this is asking for the (x, ŷ, y∗) test set instances with highest
p(ŷ | x) where ŷ 6= y∗. For each print out the gold label, the prediction, and prediction confidence.

Try to analyze—why are they classified into the wrong classes? Can you learn any insight from
these samples to help you improve your model?

4.2 Improved model

Try a variation of your model to see if you can get an improvement—engineering different fea-
tures, or change the machine learning model, for example. Report results in a results table. Each
row should be one model. The first column is the model name or description, and the second
column is the accuracy (or another holistic metric, say, macro-averaged F1) on the test set.

Write up a paragraph or two on your main findings, and why you think you’re finding what
you found.

[Note that since your dataset is small, evaluation may be noisy. Later in the course we’ll discuss
statistical testing to account for evaluation variation due to the small size of a test set.]

4.3 Extra Credit: Bag of embeddings LogReg

This is extra credit since it may take more time, and we aren’t fully covering this topic until later
in the semester. However, it’s a good fit for the problem, and integrates well into the logistic
regression modeling approach you’re using.

Try an alternate model—take word embeddings (vectors) for each word in the data, and aver-
age them, to construct the feature vector. You’ll use “pretrained” static embeddings, which you
can just download. They were created by unsupervised learning on a general text corpus. For each
word w in the document, you look up its word embedding (vector), vw. Say it’s a J-dimensional
vector, so vw ∈ RJ . The feature vector for a document will be x ∈ RJ , which is simply defined as
the vector average of all word embeddings:

x =
1

|doc|
∑
w∈doc

vw

or to be even more specific, the j’th element of x is just the average of values for that dimension
across the words:

xj =
1

|doc|
∑
w∈doc

vw,j

Use any pretrained GLOVE word embeddings that you like, which can be downloaded from
this link: https://nlp.stanford.edu/projects/glove/ We recommend using the “Twit-
ter” version (glove.twitter.27B) because it is pretrained on similar source of text to the data that
you are using for the assignment. Construct a logistic regression classifier based on averaged word
embeddings. Report any details in getting it to work, and its performance.

7

https://nlp.stanford.edu/projects/glove/

	Phase 1: Task design and annotation collection
	Task design
	Annotation collection

	Phase 2: Annotations analysis
	Annotator Feedback
	Inter-annotator agreement
	Aggregate to final dataset

	Phase 2 continued: Conceptual questions
	Logistic regression learning
	
	
	
	

	Softmax and Sigmoid
	Precision and recall: class distribution

	Phase 2 continued: NLP experiments
	BOW LogReg
	Feature preproc.
	Results
	Model insight: parameters
	Model insight: worst mistakes

	Improved model
	Extra Credit: Bag of embeddings LogReg

