
Transformers and BERT

[Incl. slides from Mohit Iyyer, Richard Socher]

CS 485, Fall 2024 
Applications of Natural Language Processing

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

• Today: introduce "Transformer" network
architecture

• Attention for generative LMs, motivated by MT

• Self-attention + feedforward for token embeddings

2

3

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

4

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

“you can’t cram the meaning
of a whole %&@#&ing
sentence into a single

$*(&@ing vector!”

— Ray Mooney (famous NLP professor at UT Austin)

5

idea: what if we use multiple vectors?

6

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Instead of:
les pauvres sont démunis =

les pauvres sont démunis =
Let’s try:

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

(all 4 hidden states!)

The solution: attention

• Attention mechanisms (Bahdanau et al.,
2015) allow the decoder to focus on a
particular part of the source sequence at
each time step

• Conceptually similar to word alignments in earlier

MT models

• For MT, can model differences in word order

between languages

7

How does it work?

• in general, we have a single query vector and
multiple key vectors. We want to score each
query-key pair

• Attention score based on query-key

similarity

• New representation = softmax-weighted

average of token embeddings

8

9

Sequence-to-sequence with attention

2/15/1853

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

dot product

Query 1:

decoder, first time step

dot product with keys
(encoder hidden states)

10

Sequence-to-sequence with attention

2/15/1854

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (”les”)

At
te

nt
io

n
di

st
rib

ut
io

n

Take softmax to turn the scores
into a probability distribution

11

Sequence-to-sequence with attention

2/15/1855

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information the hidden states that
received high attention.

12

Sequence-to-sequence with attention

2/15/1856

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Concatenate attention output
with decoder hidden state, then
use to compute !"# as before

!"#

the

13

Sequence-to-sequence with attention

2/15/1857

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

the

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

!"#

poor

decoder, second time step

Many variants of attention

• Dot product:

• Scaled dot product:

14

a(q, k) = qTk

a(q, k) =
qTk
|k |

Luong et al., 2015

Vaswani et al., 2017

• Attention score based on query-key similarity

• New representation = softmax-weighted

average of token embeddings

Transformer
• Self-attention: token-to-token attention,

within a sentence or same text (Vaswani et al. 2017)

• Use to iteratively refine a token's embedding

• e.g. for left-to-right LM:

15

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2024. All

rights reserved. Draft of August 20, 2024.

CHAPTER

9 The Transformer

“The true art of memory is the art of attention ”

Samuel Johnson, Idler #74, September 1759

In this chapter we introduce the transformer, the standard architecture for build-
ing large language models. Transformer-based large language models have com-
pletely changed the field of speech and language processing. Indeed, every subse-
quent chapter in this textbook will make use of them. We’ll focus for now on left-
to-right (sometimes called causal or autoregressive) language modeling, in which
we are given a sequence of input tokens and predict output tokens one by one by
conditioning on the prior context.

The transformer is a neural network with a specific structure that includes a
mechanism called self-attention or multi-head attention.1 Attention can be thought
of as a way to build contextual representations of a token’s meaning by attending to
and integrating information from surrounding tokens, helping the model learn how
tokens relate to each other over large spans.

Stacked
Transformer

Blocks

So long and thanks for

long and thanks forNext token all

…

…

…

U

Input tokens

x1 x2

Language
Modeling

Head

x3 x4 x5

Input
Encoding E

1+

E
2+

E
3+

E
4+

E
5+

…

… ………

U U U U

…

logits logits logits logits logits

Figure 9.1 The architecture of a (left-to-right) transformer, showing how each input token
get encoded, passed through a set of stacked transformer blocks, and then a language model
head that predicts the next token.

Fig. 9.1 sketches the transformer architecture. A transformer has three major
components. At the center are columns of transformer blocks. Each block is a
multilayer network (a multi-head attention layer, feedforward networks and layer
normalization steps) that maps an input vector xi in column i (corresponding to input

1 Although multi-head attention developed historically from the RNN attention mechanism (Chapter 8),
we’ll define attention from scratch here for readers who haven’t yet read Chapter 8.

[SLP3 ch. 9]

CO
LL

O
Q

UI
UM

PA
PE

R
CO

M
PU

TE
R

SC
IE

N
CE

S

Fig. 1. A hearer must reconstruct that the store is in a relative clause modi-
fying the chef to know that it is the chef who is out of food rather than the
linearly closer store.

neural network models, which construct rich, word-token spe-
cific deep contextual representations of human language as
numeric vectors (17, 18). In this paper, we examine how, at
this larger scale, there is a dramatic increase in what is mod-
eled by such networks. The simple task of word prediction is
a highly effective self-supervision signal: Neural networks can
and do improve on this task by inducing their own representa-
tions of sentence structure which capture many of the notions
of linguistics, including word classes (parts of speech), syntactic
structure (grammatical relations or dependencies), and coref-
erence (which mentions of an entity refer to the same entity,
such as, e.g., when “she” refers back to “Rachel”). We examine
learned attention structure in models and develop simple probes
to show that these models know about each of these types of
linguistic information. Indeed, the learned encoding of a sen-
tence to a large extent includes the information found in the
parse tree structures of sentences that have been proposed by
linguists.

This is a startling and intriguing result. Traditionally much
of the emphasis in NLP has been on using labels for part of
speech, syntax, etc., as an aid in other downstream tasks. This
result suggests that large-scale hand construction of syntactically
labeled training data may no longer be necessary for many tasks.
Despite its simple nature, the generality of word prediction,
as a task that benefits from syntactic, semantic, and discourse
information, leads to it being a very powerful multidimensional
supervision signal.

While the work presented here is interesting food for thought
about the starting point and process of human language acqui-
sition, we make no attempt to model human learning. These
models are operating in a quite different environment from that
of children, with exposure to much more linguistic input but
no real-world environment to aid learning. Nevertheless, this
work bears on the logical problem of language acquisition (19).
Importantly, it shows successful language structure learning from
positive evidence alone.

Bidirectional Encoder Representations from Transformers: A
Self-Supervised Artificial Neural Network
Current state-of-the-art NLP systems typically involve a deep
artificial neural network that was trained on a large corpus of
text using self-supervision. As an example, we describe Bidirec-
tional Encoder Representations from Transformers (BERT), a
recently proposed Transformer model and training procedure
that has gained prominence by dominating multiple key NLP
benchmarks (18, 20).

Fig. 2. The next word prediction (language-modeling) task (a) and the
cloze task (b).

Fig. 3. A high-level illustration of BERT. Words in the input sequence are
randomly masked out and then all words are embedded as vectors in Rd .
A Transformer network applies multiple layers of multiheaded attention
to the representations. The final representations are used to predict the
identities of the masked-out input words.

The self-supervision task used to train BERT is the masked
language-modeling or cloze task, where one is given a text in
which some of the original words have been replaced with a
special mask symbol. The goal is to predict, for each masked
position, the original word that appeared in the text (Fig. 3).
To perform well on this task, the model needs to leverage the
surrounding context to infer what that word could be.

BERT is a Transformer model (21), a neural network archi-
tecture, without any recurrent connections (22), which takes a
sequence of words (or other symbols) as input and produces
a contextualized vector representation of each word as its out-
put (Fig. 3). It contains many millions of trainable parameters
in a number of layers, typically requiring massive amounts of
data and computation to train. This makes Transformers dif-
ficult to train, but also highly expressive models that can out-
perform other contemporary neural networks when properly
optimized.

The key mechanism by which Transformers contextualize rep-
resentations is multiheaded attention (see Fig. 5). Attention
(23) dynamically assigns a weight to every pair of words in the
sequence, indicating how much the model should “pay attention
to” the first word when computing the representation of the sec-
ond one. Transformers use multiple attention heads in parallel,
where each head can potentially capture a completely differ-
ent word–word relation. Transformers aggregate the information
from each head to produce a single output vector representation
for each word in the sequence. We provide more mathematical
detail below.

Fig. 4. An example where implicitly modeling syntactic structure may
assist in predicting the missing word and improve language-modeling
performance.

Manning et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30047

D
ow

nl
oa

de
d

fro
m

 h
ttp

s:/
/w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

M
A

SS
A

CH
U

SE
TT

S
A

M
H

ER
ST

 S
ER

IA
LS

 D
EP

T/
A

CQ
 D

EP
T

on
 N

ov
em

be
r 1

6,
 2

02
3

fro
m

 IP
 a

dd
re

ss
 1

28
.1

19
.4

0.
19

6.

[Manning et al., 2020]

• e.g. for masked LM:
Transformer

https://www.pnas.org/doi/10.1073/pnas.1907367117

• The keys to the cabinet {are / is} on the table 
 
 

• The chicken didn't cross the road because
it was too {tired / wide}

Why self-attention?

• Idea: LM-relevant contextual information may be pretty far away!

• The keys to the cabinet, which I love so much and are important

and I think about all the time, [....] {are / is} on the table

18

9.1 • ATTENTION 3

In (9.4), the phrase The keys is the subject of the sentence, and in English and many
languages, must agree in grammatical number with the verb are; in this case both are
plural. In English we can’t use a singular verb like is with a plural subject like keys

(we’ll discuss agreement more in Chapter 18). In (9.5), we know that bank refers
to the side of a pond or river and not a financial institution because of the context,
including words like pond. (We’ll discuss word senses more in Chapter 11.)

The point of all these examples is that these contextual words that help us com-
pute the meaning of words in context can be quite far away in the sentence or para-
graph. Transformers can build contextual representations of word meaning, contex-
tual embeddings, by integrating the meaning of these helpful contextual words. In acontextual

embeddings
transformer, layer by layer, we build up richer and richer contextualized representa-
tions of the meanings of input tokens. At each layer, we compute the representation
of a token i by combining information about i from the previous layer with infor-
mation about the neighboring tokens to produce a contextualized representation for
each word at each position.

Attention is the mechanism in the transformer that weighs and combines the
representations from appropriate other tokens in the context from layer k�1 to build
the representation for tokens in layer k.

Th
e

ch
ic

ke
n

di
dn

’t

cr
os

s

th
e

ro
ad

be
ca

us
e

it wa
s

to
o

ti
re

d

Th
e

ch
ic

ke
n

di
dn

’t

cr
os

s

th
e

ro
ad

be
ca

us
e

it wa
s

to
o

ti
re

d

Layer k+1

Layer k

self-attention distribution

columns corresponding to input tokens

Figure 9.2 The self-attention weight distribution a that is part of the computation of the
representation for the word it at layer k+1. In computing the representation for it, we attend
differently to the various words at layer l, with darker shades indicating higher self-attention
values. Note that the transformer is attending highly to the columns corresponding to the
tokens chicken and road , a sensible result, since at the point where it occurs, it could plausibly
corefers with the chicken or the road, and hence we’d like the representation for it to draw on
the representation for these earlier words. Figure adapted from Uszkoreit (2017).

Fig. 9.2 shows a schematic example simplified from a transformer (Uszkoreit,
2017). The figure describes the situation when the current token is it and we need
to compute a contextual representation for this token at layer k+1 of the transformer,
drawing on the representations (from layer k) of every prior token. The figure uses
color to represent the attention distribution over the contextual words: the tokens
chicken and road both have a high attention weight, meaning that as we are com-
puting the representation for it, we will draw most heavily on the representation for
chicken and road. This will be useful in building the final representation for it,
since it will end up coreferring with either chicken or road.

Let’s now turn to how this attention distribution is represented and computed.

9.1 • ATTENTION 5

the softmax weight will likely be highest for xi, since xi is very similar to itself,
resulting in a high dot product. But other context words may also be similar to i, and
the softmax will also assign some weight to those words. Then we use these weights
as the a values in Eq. 9.6 to compute the weighted sum that is our a3.

The simplified attention in equations 9.6 – 9.8 demonstrates the attention-based
approach to computing ai: compare the xi to prior vectors, normalize those scores
into a probability distribution used to weight the sum of the prior vector. But now
we’re ready to remove the simplifications.

A single attention head using query, key, and value matrices Now that we’ve
seen a simple intuition of attention, let’s introduce the actual attention head, theattention head
version of attention that’s used in transformers. (The word head is often used inhead
transformers to refer to specific structured layers). The attention head allows us to
distinctly represent three different roles that each input embedding plays during the
course of the attention process:

• As the current element being compared to the preceding inputs. We’ll refer to
this role as a query.query

• In its role as a preceding input that is being compared to the current element
to determine a similarity weight. We’ll refer to this role as a key.key

• And finally, as a value of a preceding element that gets weighted and summedvalue
up to compute the output for the current element.

To capture these three different roles, transformers introduce weight matrices
WQ, WK, and WV. These weights will project each input vector xi into a represen-
tation of its role as a key, query, or value:

qi = xiW
Q; ki = xiWK; vi = xiW

V (9.9)

Given these projections, when we are computing the similarity of the current ele-
ment xi with some prior element x j, we’ll use the dot product between the current
element’s query vector qi and the preceding element’s key vector k j. Furthermore,
the result of a dot product can be an arbitrarily large (positive or negative) value, and
exponentiating large values can lead to numerical issues and loss of gradients during
training. To avoid this, we scale the dot product by a factor related to the size of the
embeddings, via diving by the square root of the dimensionality of the query and
key vectors (dk). We thus replace the simplified Eq. 9.7 with Eq. 9.11. The ensuing
softmax calculation resulting in ai j remains the same, but the output calculation for
ai is now based on a weighted sum over the value vectors v (Eq. 9.13).

Here’s a final set of equations for computing self-attention for a single self-
attention output vector ai from a single input vector xi. This version of attention
computes ai by summing the values of the prior elements, each weighted by the
similarity of its key to the query from the current element:

qi = xiW
Q; k j = x jW

K; v j = x jW
V (9.10)

score(xi,x j) =
qi ·k jp

dk

(9.11)

ai j = softmax(score(xi,x j)) 8 j  i (9.12)

ai =
X

ji

ai jv j (9.13)

We illustrate this in Fig. 9.4 for the case of calculating the value of the third output
a3 in a sequence.

• And in addition to the self-attention mechanism,

• This was one head = (WQ, WK, WV) tuple. There are multiple

heads which can specialize for different attention behaviors

• Feedforward + residual layer

19

20

6 CHAPTER 9 • THE TRANSFORMER

6. Sum the weighted
value vectors

4. Turn into !i,j weights via softmax

a3

1. Generate
key, query, value

vectors

2. Compare x3’s query with
the keys for x1, x2, and x3

Output of self-attention

Wk

Wv

Wq

x1

k

q

v x3

k

q

vx2

k

q

v

× ×

Wk Wk

Wq Wq

WvWv

5. Weigh each value vector

÷
√dk

3. Divide score by √dk
÷

√dk
÷

√dk

!3,1 !3,2 !3,3

Figure 9.4 Calculating the value of a3, the third element of a sequence using causal (left-
to-right) self-attention.

Let’s talk shapes. The input to attention xi and the output from attention ai both
have the same dimensionality 1⇥ d (We often call d the model dimensionality,
and indeed as we’ll discuss in Section 9.2 the output hi of each transformer block,
as well as the intermediate vectors inside the transformer block also have the same
dimensionality 1⇥d.).

We’ll have a dimension dk for the key and query vectors. The query vector and
the key vector are both dimensionality 1⇥dk, so we can take their dot product qi ·k j.
We’ll have a separate dimension dv for the value vectors. The transform matrix WQ

has shape [d ⇥ dk], WK is [d ⇥ dk], and WV is [d ⇥ dv]. In the original transformer
work (Vaswani et al., 2017), d was 512, dk and dv were both 64.

Multi-head Attention Equations 9.11-9.13 describe a single attention head. But
actually, transformers use multiple attention heads. The intuition is that each head
might be attending to the context for different purposes: heads might be special-
ized to represent different linguistic relationships between context elements and the
current token, or to look for particular kinds of patterns in the context.

So in multi-head attention we have h separate attention heads that reside inmulti-head
attention

parallel layers at the same depth in a model, each with its own set of parameters that
allows the head to model different aspects of the relationships among inputs. Thus
each head i in a self-attention layer has its own set of key, query and value matrices:
WKi, WQi and WVi. These are used to project the inputs into separate key, value,
and query embeddings for each head.

When using multiple heads the model dimension d is still used for the input
and output, the key and query embeddings have dimensionality dk, and the value
embeddings are of dimensionality dv (again, in the original transformer paper dk =
dv = 64, h = 8, and d = 512). Thus for each head i, we have weight layers WQi of
shape [d ⇥dk], WKi of shape [d ⇥dk], and WVi of shape [d ⇥dv].

Below are the equations for attention augmented with multiple heads; Fig. 9.5

BERT
• “Bidirectional encoder representations from Transformers”

• Transformer: a "self-attention" neural net architecture that infers
context-aware token embeddings

• Bidirectional: Pretraining with a masked LM, predicting missing
word(s) from rest of words in sentence

• Usage

• 1. Pretrain the network via masked language model on a large

corpus

• 2. Fine-tune: further learn better parameters for a specific task,

e.g. classification

• BERT (+ variants) are really useful, and work because they

learn both word embeddings and linguistic structure from
pretraining

• many implementations: 

https://huggingface.co/docs/transformers/index

21

https://huggingface.co/docs/transformers/index

What does BERT learn?

22

CO
LL

O
Q

UI
UM

PA
PE

R
CO

M
PU

TE
R

SC
IE

N
CE

S

Fig. 6. Some BERT attention heads that appear sensitive to linguistic phenomena, despite not being explicitly trained on linguistic annotations. In the
example attention maps, the darkness of a line indicates the size of the attention weight. All attention to/from red words is colored red; these words are
chosen to highlight certain of the attention heads’ behaviors. [CLS] (classification) and [SEP] (separator) are special tokens BERT adds to the input during
preprocessing. Attention heads are numbered by their layer and index in BERT. Reprinted with permission from ref. 59, which is licensed under CC BY 4.0.

The Transformer network (21) uses a flavor of this mechanism
called self-attention, where each input word plays a dual role
as both a query and a selectable item. This is implemented by
passing the vector representation of every word xi through three
different linear transformations, resulting in query qi , key ki , and
value vi vectors. Each query qj can then attend over all of the
key-value pairs (ki , vi) in the sequence, producing a different
attention distribution ↵j (i.e., ↵j

i denotes the attention weight
toward position i from position j) and output yj for each word,
as shown in Fig. 5.

Attention has been a highly successful neural network compo-
nent for processing text (31), video (32), image (33), and speech
(34) data. A Transformer network consists of multiple layers with
each layer containing multiple attention heads. Each head com-
putes its own independent attention weights and output vectors;
the output vectors across heads are concatenated together when
producing a layer’s output.

Method: Attention Heads as Simple Classifiers. We quantitatively
study the correspondence between attention heads and linguis-
tic phenomena by observing the behavior of attention heads on
corpora of annotated data. We focus on data where the anno-
tations assign each pair of words (wi ,wj) a label l(wi ,wj) that
is 1 if a particular linguistic relationship between words holds
(e.g., wi is wj ’s syntactic head) and is 0 if otherwise. To inter-
pret what an attention head in BERT is computing, we examine
the most-attended-to word at each position. More formally, if
↵(w , h) denotes the attention distribution of head h when BERT
is run over the sequence of words w = [w1, . . . ,wn], we find the
most-attended-to word wargmaxi↵(w ,h)ji

for each position 1 j 
n . We then evaluate whether the attention head is expressing
a particular linguistic relationship by computing how often the
most-attended-to word is in that relationship with the input word

(i.e., how often the head “pays attention to” linguistically rele-
vant words). If Sl(w)= {j :

Pn
i=1 l(wi ,wj)> 0} is the subset of

the input expressing the annotated relationship, the precision
score for the head is computed as

precision(h)=
1
N

X

w2corpus

X

j2Sl (w)

l(wargmaxi↵(w ,h)ji
,wj), [3]

where N is the total number of words in the corpus expressing
the relationship. This score can be viewed as evaluating the atten-
tion head as a simple classifier that predicts the presence of the
linguistic relationship of interest.

Experiments. We use the original base-sized uncased BERT
model from Google, which consists of 12 layers each containing
12 attention heads and 768-dimensional hidden vectors. We use
“head hlayeri-hindexi” to denote a particular attention head.

Our first evaluation is on syntactic dependencies, using the
Wall Street Journal (WSJ) portion of the Penn Treebank (4,
35) annotated with Stanford Dependencies (SD) (36) as the cor-
pus. In dependency syntax, typed directed edges connect words,
forming a tree structure describing the sentence’s syntax. In par-
ticular, the tree structure results from each word having exactly

Table 2. Precisions (%) of systems selecting a correct antecedent
for a coreferent mention in the CoNLL-2012 data by mention type

Model All Pronoun Proper Nominal

Nearest 15 23 9 11
Rule based 66 72 73 48
Head 5-4 70 68 76 64

Manning et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30049

D
ow

nl
oa

de
d

fro
m

 h
ttp

s:/
/w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

M
A

SS
A

CH
U

SE
TT

S
A

M
H

ER
ST

 S
ER

IA
LS

 D
EP

T/
A

CQ
 D

EP
T

on
 N

ov
em

be
r 1

6,
 2

02
3

fro
m

 IP
 a

dd
re

ss
 1

28
.1

19
.4

0.
19

6.

[Manning et al., 2020]

https://www.pnas.org/doi/10.1073/pnas.1907367117

23

What does BERT learn?

4595

Figure 1: Summary statistics on BERT-large. Columns
on left show F1 dev-set scores for the baseline (P (0)

⌧)
and full-model (P (L)

⌧) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).

idence that the corresponding layer contains more
information related to that particular task.

Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =
LX

`=0

` · s(`)⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P (`)

⌧ }` which use scalar mixing (Eq. 1) to attend
to layer ` as well as all previous layers. P (0)

⌧ corre-
sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P (`+1)

⌧ has a similar number of parameters but
with access to strictly more information than P

(`)
⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s(`)⌧ (§3.1); outlined (purple)
are differential scores �(`)

⌧ (§3.2), normalized for each
task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �(`)

⌧ , which
measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧)� Score(P (`�1)
⌧) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.

4595

Figure 1: Summary statistics on BERT-large. Columns
on left show F1 dev-set scores for the baseline (P (0)

⌧)
and full-model (P (L)

⌧) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).

idence that the corresponding layer contains more
information related to that particular task.

Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =
LX

`=0

` · s(`)⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P (`)

⌧ }` which use scalar mixing (Eq. 1) to attend
to layer ` as well as all previous layers. P (0)

⌧ corre-
sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P (`+1)

⌧ has a similar number of parameters but
with access to strictly more information than P

(`)
⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s(`)⌧ (§3.1); outlined (purple)
are differential scores �(`)

⌧ (§3.2), normalized for each
task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �(`)

⌧ , which
measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧)� Score(P (`�1)
⌧) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.

[Tenney et al., 2019]

4595

Figure 1: Summary statistics on BERT-large. Columns
on left show F1 dev-set scores for the baseline (P (0)

⌧)
and full-model (P (L)

⌧) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).

idence that the corresponding layer contains more
information related to that particular task.

Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =
LX

`=0

` · s(`)⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P (`)

⌧ }` which use scalar mixing (Eq. 1) to attend
to layer ` as well as all previous layers. P (0)

⌧ corre-
sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P (`+1)

⌧ has a similar number of parameters but
with access to strictly more information than P

(`)
⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s(`)⌧ (§3.1); outlined (purple)
are differential scores �(`)

⌧ (§3.2), normalized for each
task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �(`)

⌧ , which
measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧)� Score(P (`�1)
⌧) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.

• BERT is typically the highest accuracy way to predict POS,
syntax, NER, etc.

• If you use multiple layers to predict linguistic structures, what
layers encode the information?

https://aclanthology.org/P19-1452/

What does BERT learn?

24 [Rogers et al., 2020]

3 What Knowledge Does BERT Have?

A number of studies have looked at the know-

ledge encoded in BERT weights. The popular ap-

proaches include fill-in-the-gap probes of MLM,

analysis of self-attention weights, and probing

classifiers with different BERT representations as

inputs.

3.1 Syntactic Knowledge

Lin et al. (2019) showed that BERT representa-

tions are hierarchical rather than linear, that is,

there is something akin to syntactic tree structure

in addition to the word order information. Tenney

et al. (2019b) and Liu et al. (2019a) also showed

that BERT embeddings encode information

about parts of speech, syntactic chunks, and

roles. Enough syntactic information seems to be

captured in the token embeddings themselves to

recover syntactic trees (Vilares et al., 2020; Kim

et al., 2020; Rosa and Mareček, 2019), although

probing classifiers could not recover the labels

of distant parent nodes in the syntactic tree (Liu

et al., 2019a). Warstadt and Bowman (2020) report

evidence of hierarchical structure in three out of

four probing tasks.

As far as how syntax is represented, it seems

that syntactic structure is not directly encoded

in self-attention weights. Htut et al. (2019) were

unable to extract full parse trees from BERT

heads even with the gold annotations for the root.

Jawahar et al. (2019) include a brief illustration of

a dependency tree extracted directly from self-

attention weights, but provide no quantitative

evaluation.

However, syntactic information can be recov-

ered from BERT token representations. Hewitt

and Manning (2019) were able to learn transforma-

tion matrices that successfully recovered syntactic

dependencies in PennTreebank data from BERT’s

token embeddings (see also Manning et al., 2020).

Jawahar et al. (2019) experimented with transfor-

mations of the [CLS] token using Tensor Product

Decomposition Networks (McCoy et al., 2019a),

concluding that dependency trees are the best

match among five decomposition schemes (although

the reported MSE differences are very small).

Miaschi and Dell’Orletta (2020) perform a range

of syntactic probing experiments with concate-

nated token representations as input.

Note that all these approaches look for the

evidence of gold-standard linguistic structures,

Figure 1: Parameter-free probe for syntactic know-
ledge: words sharing syntactic subtrees have larger
impact on each other in the MLM prediction (Wu et al.,
2020).

and add some amount of extra knowledge to the

probe. Most recently, Wu et al. (2020) proposed a

parameter-free approach based on measuring the

impact that one word has on predicting another

word within a sequence in the MLM task (Figure 1).

They concluded that BERT ‘‘naturally’’ learns

some syntactic information, although it is not

very similar to linguistic annotated resources.

The fill-in-the-gap probes of MLM showed

that BERT takes subject-predicate agreement

into account when performing the cloze task

(Goldberg, 2019; van Schijndel et al., 2019),

even for meaningless sentences and sentences

with distractor clauses between the subject and

the verb (Goldberg, 2019). A study of negative

polarity items (NPIs) by Warstadt et al. (2019)

showed that BERT is better able to detect the

presence of NPIs (e.g., ‘‘ever’’) and the words

that allow their use (e.g., ‘‘whether’’) than

scope violations.

The above claims of syntactic knowledge are

belied by the evidence that BERT does not

‘‘understand’’ negation and is insensitive to

malformed input. In particular, its predictions

were not altered2 even with shuffled word order,

2See also the recent findings on adversarial triggers, which

get the model to produce a certain output even though they

843

https://aclanthology.org/2020.tacl-1.54/

Using BERT
• You get

• Per-token embeddings

• Multiple layers of embeddings (!)

• Embedding for per-sentence “[CLS]” symbol

• Use as input for tasks

• Fine-tuning: add a prediction head, then

backprop through the actual BERT model itself

• The transformer network (with fine-tuned

parameters) is your final classifier/tagger

• Less common: directly use embeddings

25

Byte pair encoding (BPE)
• BERT is a neural LM designed to be used on arbitrary text later. But what should

the vocabulary be?

• Deal with rare words / large vocabulary by using subword tokenization

• Initial analysis step iteratively merges frequent character n-grams to form the vocabulary

• Confusing name comes from data compression literature - not actually about bytes for us

• Poor tokenization can cause many problems in practice

26 Sennrich et al., ACL 2016

Application
• Fine-tuned BERT is one of the most accurate ways to train a

text classifier or tagger if you have a moderate (>100) amount
of labeled data

• "BERT" sometimes means the original release, but
sometimes means the general class of models (!)

• Many pretrained BERT-like, MLM-trained models are available

• RoBERTa is a good, general-purpose one

• mBERT and XLM-R: multilingual models

• Many specific languages or language families (AfriBERTa,

LatinBERT, ...)

• Many domains (LegalBERT, BERTweet, SciBERT, ...)

• Check out HuggingFaces’ examples

• https://huggingface.co/transformers/examples.html

27

https://huggingface.co/transformers/examples.html

SentenceBERT
• Also there are many released BERT-likes

tuned for specific tasks - sentiment,
toxicity, etc.

• SentenceBERT is worth mentioning:
designed to encode sentences to
embedding vectors

• Cosine similarity often works very

well!

• The model is trained to give high

cosine similarity to human-annotated
pairs of similar sentences

• https://sbert.net/

28

Sentence A Sentence B

BERT BERT

u v

pooling pooling

(u, v, |u-v|)

Softmax classifier

Figure 1: SBERT architecture with classification ob-
jective function, e.g., for fine-tuning on SNLI dataset.
The two BERT networks have tied weights (siamese
network structure).

computed candidate embeddings using attention.
This idea works for finding the highest scoring
sentence in a larger collection. However, poly-
encoders have the drawback that the score function
is not symmetric and the computational overhead
is too large for use-cases like clustering, which
would require O(n2) score computations.

Previous neural sentence embedding methods
started the training from a random initialization.
In this publication, we use the pre-trained BERT
and RoBERTa network and only fine-tune it to
yield useful sentence embeddings. This reduces
significantly the needed training time: SBERT can
be tuned in less than 20 minutes, while yielding
better results than comparable sentence embed-
ding methods.

3 Model

SBERT adds a pooling operation to the output
of BERT / RoBERTa to derive a fixed sized sen-
tence embedding. We experiment with three pool-
ing strategies: Using the output of the CLS-token,
computing the mean of all output vectors (MEAN-
strategy), and computing a max-over-time of the
output vectors (MAX-strategy). The default config-
uration is MEAN.

In order to fine-tune BERT / RoBERTa, we cre-
ate siamese and triplet networks (Schroff et al.,
2015) to update the weights such that the produced
sentence embeddings are semantically meaningful
and can be compared with cosine-similarity.

The network structure depends on the available

Sentence A Sentence B

BERT BERT

u v

pooling pooling

cosine-sim(u, v)

-1 … 1

Figure 2: SBERT architecture at inference, for exam-
ple, to compute similarity scores. This architecture is
also used with the regression objective function.

training data. We experiment with the following
structures and objective functions.

Classification Objective Function. We con-
catenate the sentence embeddings u and v with
the element-wise difference |u�v| and multiply it
with the trainable weight Wt 2 R3n⇥k:

o = softmax(Wt(u, v, |u� v|))

where n is the dimension of the sentence em-
beddings and k the number of labels. We optimize
cross-entropy loss. This structure is depicted in
Figure 1.

Regression Objective Function. The cosine-
similarity between the two sentence embeddings
u and v is computed (Figure 2). We use mean-
squared-error loss as the objective function.

Triplet Objective Function. Given an anchor
sentence a, a positive sentence p, and a negative
sentence n, triplet loss tunes the network such that
the distance between a and p is smaller than the
distance between a and n. Mathematically, we
minimize the following loss function:

max(||sa � sp||� ||sa � sn||+ ✏, 0)

with sx the sentence embedding for a/n/p, || · ||
a distance metric and margin ✏. Margin ✏ ensures
that sp is at least ✏ closer to sa than sn. As metric
we use Euclidean distance and we set ✏ = 1 in our
experiments.

3.1 Training Details

We train SBERT on the combination of the SNLI
(Bowman et al., 2015) and the Multi-Genre NLI

[Reimers and Gurevich, 2019]

Sentence-BERT:%20Sentence%20Embeddings%20using%20Siamese%20BERT-Networks

Challenges

• Some issues

• Bidirectional models can't generate

• BERT fails to model plenty of tricky phenomena

• How to collect a large pretraining corpus?

• Why does all this work?

• BERT fine-tuning is often the best classifier
you can make.

• Note widely used variants: RoBERTa, DeBERTa

29

