
Neural Networks in NLP


[Slides from Mohit Iyyer and Richard Socher]

CS 485, Fall 2024 
Applications of Natural Language Processing


 

Brendan O'Connor


College of Information and Computer Sciences

University of Massachusetts Amherst



• Progress report: due Friday 11/15 (next week)


• HW3 and HW4 after that (short)


• HW3: using BERT for classification (out next week)


• HW4: TBD


• Final presentations: Dec 3 & 5
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• We have word embeddings...
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• Can we compose meanings (embeddings) for 
phrases, sentences, etc.?

 neural 

network ( ) = 

really good booka

• Or, contextual meaning for each token?


• Key idea: automatically determine how to 
combine embedding from different tokens



Neural Network models
• We've looked at linear models within logistic regression (for 

classification & language modeling)


• A proper neural network adds a hidden layer with a non-
linear activation function, which allows (in theory) it to 
learn arbitrary functions (!) via yet more latent representations


• Pros:


• flexible learning algorithm allows for customized architectures to 
reflect sequential language data


• and thus latent representations for tokens, phrases, etc., beyond just 
word embeddings


• and can make them really big, if you have lots of data


• and can be parallelized internally (via GPUs or similar)


• Cons:


• often unclear what it's learning internally ("black box")


• they can get slow & compute-intensive
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A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
If	we	feed	a	vector	of	inputs	through	a	bunch	of	logistic	regression	
functions,	then	we	get	a	vector	of	outputs	…

But	we	don’t	have	to	decide	
ahead	of	time	what	variables	
these	logistic	regressions	are	
trying	to	predict!

1/18/1840

NN: kind of like several intermediate logregs
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A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
…	which	we	can	feed	into	another	logistic	regression	function

It	is	the	loss	function	
that	will	direct	what	
the	intermediate	
hidden	variables	should	
be,	so	as	to	do	a	good	
job	at	predicting	the	
targets	for	the	next	
layer,	etc.

1/18/1841

NN: kind of like several intermediate logregs
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A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
Before	we	know	it,	we	have	a	multilayer	neural	network….

1/18/1842

NN: kind of like several intermediate logregs

a.k.a. feedforward network (see INLP on terminology)



Nonlinear activations
• “Squash functions”!
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50 CHAPTER 3. NONLINEAR CLASSIFICATION

Figure 3.2: The sigmoid, tanh, and ReLU activation functions

where the function � is now applied elementwise to the vector of inner products,

�(⇥(x!z)x) = [�(✓(x!z)
1 · x),�(✓(x!z)

2 · x), . . . ,�(✓(x!z)
Kz

· x)]>. [3.8]

Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities �(✓k · x). The resulting classifier is
barely changed:

z =�(⇥(x!z)x) [3.9]

p(y | x;⇥(z!y), b) = SoftMax(⇥(z!y)z + b). [3.10]

This defines a classification model that predicts the label y 2 Y from the base features x,
through a“hidden layer” z. This is a feedforward neural network.2

3.2 Designing neural networks

There several ways to generalize the feedforward neural network.

3.2.1 Activation functions

If the hidden layer is viewed as a set of latent features, then the sigmoid function in Equa-
tion 3.9 represents the extent to which each of these features is “activated” by a given
input. However, the hidden layer can be regarded more generally as a nonlinear trans-
formation of the input. This opens the door to many other activation functions, some of
which are shown in Figure 3.2. At the moment, the choice of activation functions is more
art than science, but a few points can be made about the most popular varieties:

2The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in the previous chapter.

Jacob Eisenstein. Draft of November 13, 2018.

Better name: non-linearity

Ñ Logistic / Sigmoid

f (x) =
1

1+e�x
(1)

Ñ tanh

f (x) = tanh(x) =
2

1+e�2x
�1

(2)

Ñ ReLU

f (x) =

⇢
0 for x < 0

x for x � 0
(3)

Ñ SoftPlus: f (x) = ln(1+ex)

| UMD Multilayer Networks | 5 / 13



is a multi-layer neural network with no nonlinearities 

(i.e., f is the identity f(x) = x)


more powerful than a one-layer network?



No! You can just compile all of the layers into a single 
transformation!

y = f(W3 f(W2 f(W1x))) = Wx

is a multi-layer neural network with no nonlinearities 

(i.e., f is the identity f(x) = x)


more powerful than a one-layer network?



Demo
• https://playground.tensorflow.org/
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• It's easy to create different neural network 
architectures, and execute gradient descent 
learning for arbitrary networks, via 
backpropagation

• e.g. the PyTorch library for Python


• Illustration: deep averaging models for text 
classification
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“bag of embeddings”

really good book

predict Positive

a… …

av =
nX

i=1

ci
n

affine transformation

c1 c2 c3 c4

Iyyer et al., ACL 2015

p(y = c | x) = exp(W (av))
PK

k=1 exp(W (av))k



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

what are our model 
parameters (i.e., 

weights)?



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

how do i update 
these parameters 
given the loss L?

L = cross-entropy(out,  ground-truth)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

= ???

how do i update 
these parameters 
given the loss L?

L = cross-entropy(out,  ground-truth)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

=
∂L

∂out
∂out
∂z2

∂z2

∂z1

∂z1

∂av
∂av
∂ci

chain rule!!!



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

= ???

L = cross-entropy(out,  ground-truth)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

=
∂L

∂out
∂out
∂z2

∂z2

∂W2

L = cross-entropy(out,  ground-truth)



backpropagation
• use the chain rule to compute partial 

derivatives w/ respect to each parameter

• trick: re-use derivatives computed for higher 

layers to compute derivatives for lower layers!
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∂L
∂ci

=
∂L

∂out
∂out
∂z2

∂z2

∂z1

∂z1

∂av
∂av
∂ci

∂L
∂W2

=
∂L

∂out
∂out
∂z2

∂z2

∂W2

Rumelhart et al., 1986 



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Initialization

def __init__(self, n_classes, vocab_size, emb_dim=300,
n_hidden_units=300):

super(DanModel, self).__init__()
self.n_classes = n_classes
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_hidden_units = n_hidden_units
self.embeddings = nn.Embedding(self.vocab_size,

self.emb_dim)
self.classifier = nn.Sequential(

nn.Linear(self.n_hidden_units,
self.n_hidden_units),

nn.ReLU(),
nn.Linear(self.n_hidden_units,

self.n_classes))
self._softmax = nn.Softmax()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 4 / 7

deep learning frameworks make 
building NNs super easy!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2) set up the network



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Forward

def forward(self, batch, probs=False):
text = batch[’text’][’tokens’]
length = batch[’length’]
text_embed = self._word_embeddings(text)
# Take the mean embedding. Since padding results
# in zeros its safe to sum and divide by length
encoded = text_embed.sum(1)
encoded /= lengths.view(text_embed.size(0), -1)

# Compute the network score predictions
logits = self.classifier(encoded)
if probs:

return self._softmax(logits)
else:

return logits

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 5 / 7

deep learning frameworks make 
building NNs super easy!

do a forward pass to compute prediction

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training

def _run_epoch(self, batch_iter, train=True):
self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make 
building NNs super easy!

do a backward pass to update weights

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training

def _run_epoch(self, batch_iter, train=True):
self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make 
building NNs super easy!

do a backward pass to update weights

that’s it! no need to compute 
gradients by hand!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)



How NN models are used

• For classification or tagging:


• Direct supervised training


• Pretrain then fine-tune pipeline


• Or: directly use an NN LM for generation
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NN architectures

• We need neural network models that can 
process token-by-token


• Major components

• Recurrent neural networks (RNNs)

• Attention mechanism (softmax over tokens)

• Self-attention ("Transformers"; next lecture)


• This is basically the entire model behind BERT and 
GPT, the best general-purpose NN NLP models 
today!
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Recurrent neural networks
• Idea: beyond the original word embedding, 

every token has its own hidden state vector 
h_t, influenced by the previous state!
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Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

the      poor    don’t    have      any    money  <END>

Decoder RNN

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!

• Many applications

• Next word prediction

• Text classification

• Translation...



First Citizen:

Nay, then, that was hers,

It speaks against your other service:

But since the

youth of the circumstance be spoken:

Your uncle and one Baptista's daughter.


SEBASTIAN:

Do I stand till the break off.


BIRON:

Hide thy head.


VENTIDIUS:

He purposeth to Athens: whither, with the vow

I made to handle you.

PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain'd into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.


Second Senator:

They are away this miseries, produced upon my soul,

Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

Character LMs comparison: RNN (LSTM) vs. N-Gram

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Structure awareness (one particular RNN hidden state)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

the      poor    don’t    have      any    money  <END>

Decoder RNN

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!
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Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

the      poor    don’t    have      any    money  <END>

Decoder RNN

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!


