Word Embeddings (II)

CS 485, Fall 2024 Applications of Natural Language Processing

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

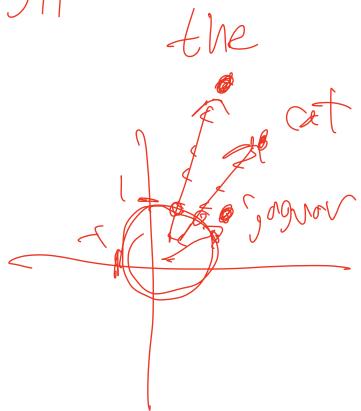
- What do we have
 - Dense vector model of word meanings
 - For many words, learned from a large corpus
 - Learned from principle of distributional similarity

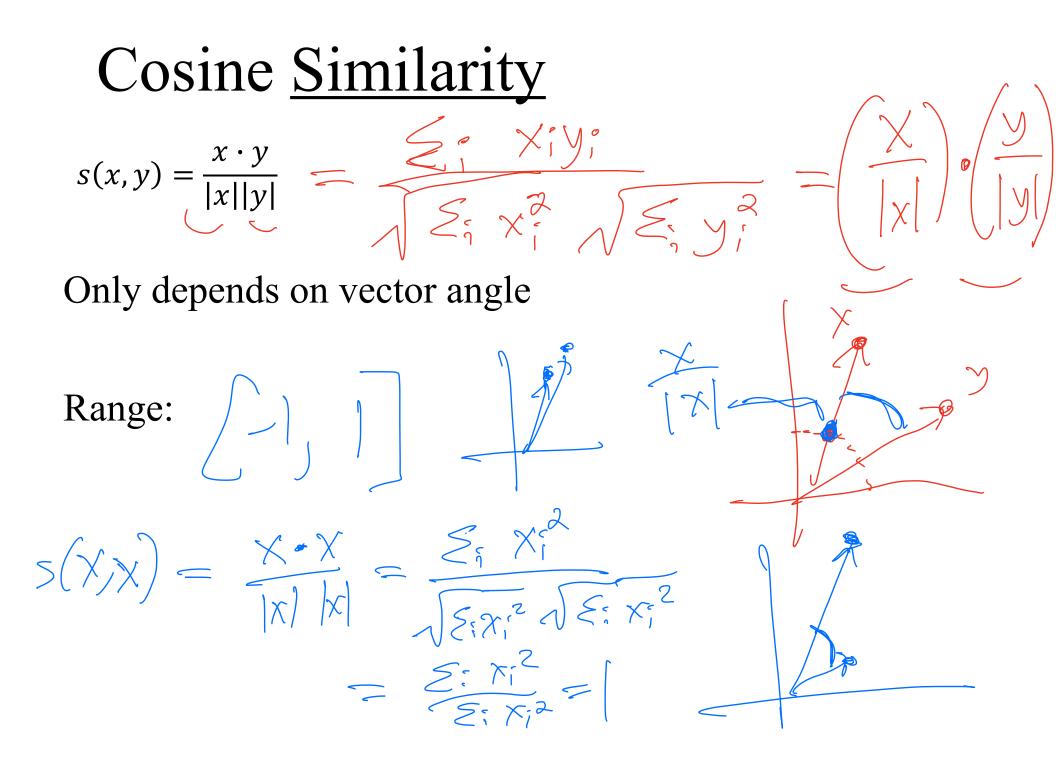
How do we compare vectors? $\mathcal{M}(X, y)$

- · Similarity measurements
 - · Larger values \rightarrow similar vectors \rightarrow similar words
 - · Smaller values \rightarrow dissimilar vectors \rightarrow dissimilar words
- · Distance / dissimilarity measurements
 - · Note: distance metric requires triangle inequality
 - · Larger values \rightarrow dissimilar vectors \rightarrow dissimilar words
 - · Smaller values \rightarrow similar vectors \rightarrow similar words

Euclidean Distance
$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2} = \|X - y\|$$

Issue: Vector length depends on frequency. More frequent words will have longer vectors.

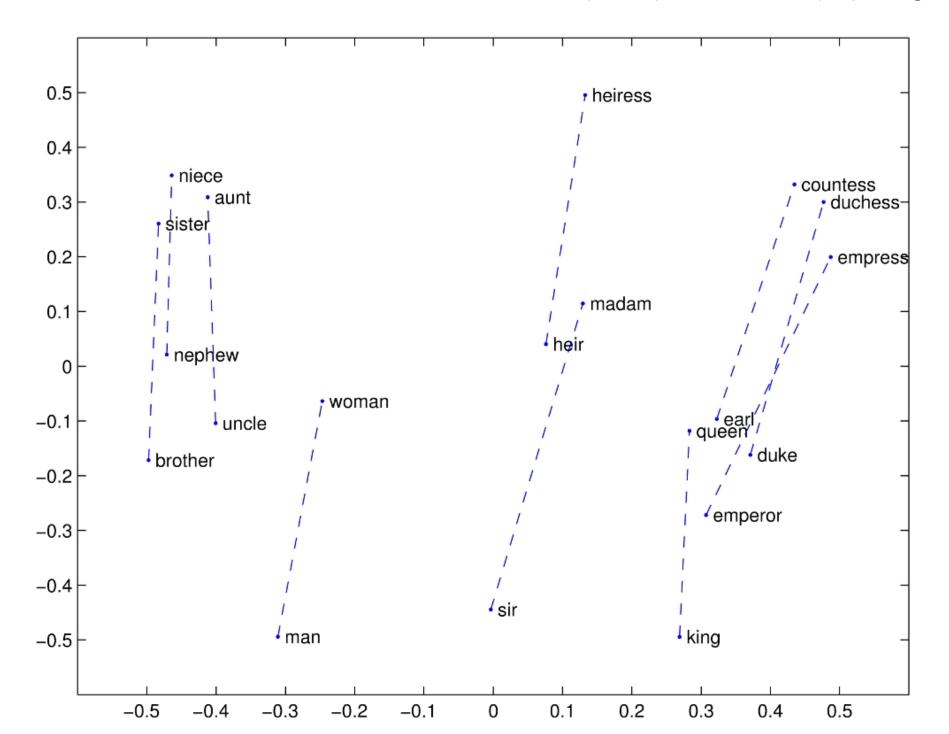




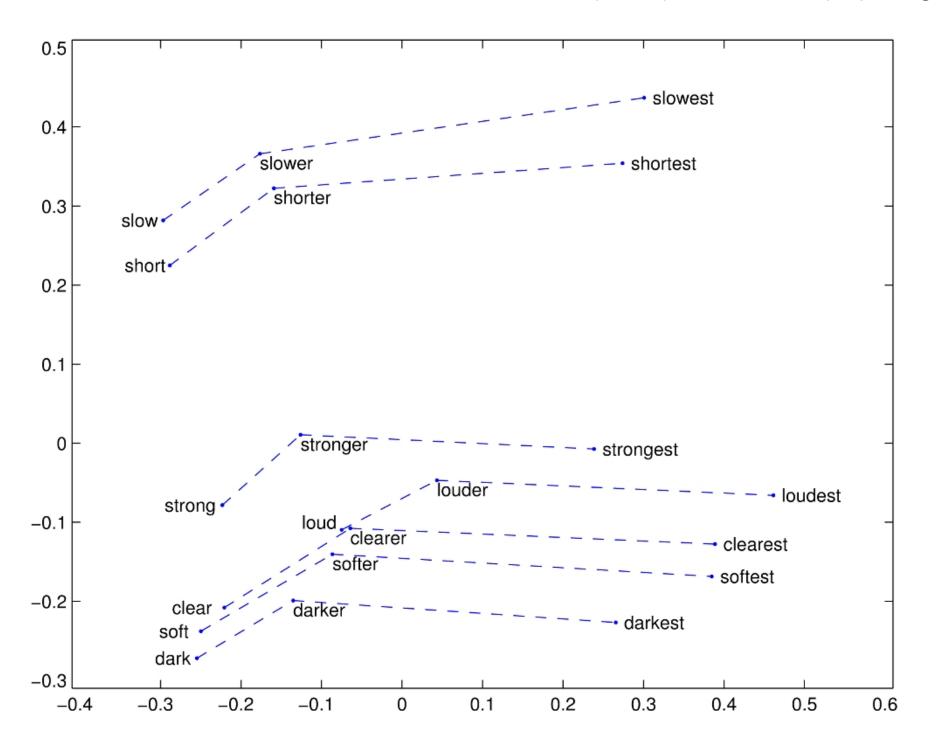
What does it learn?

- Demo: GLOVE embedding similarities
 - fasttext, glove, and word2vec are most-often used pretrained word embeddings

https://nlp.stanford.edu/projects/glove/



https://nlp.stanford.edu/projects/glove/

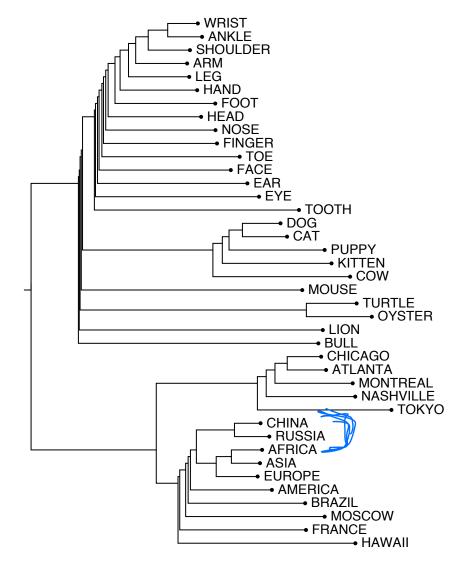


embeddings may have larger-scale semantic structure?

- Hierarchical distributional word clusters, trained from tweets: <u>http://www.cs.cmu.edu/~ark/TweetNLP/</u> <u>cluster_viewer.html</u>
- What distinctions is it learning?

Optimistic --- pessimistic

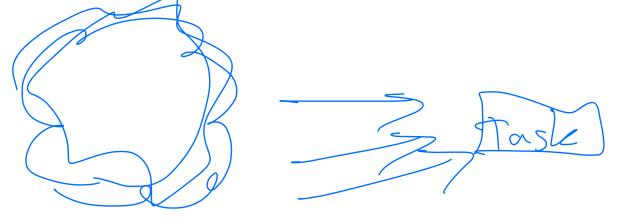
embeddings may have larger-scale semantic structure?



SLP3 ch. 6

ok so what can we do with them?

• Transfer learning from large, unsup. corpus

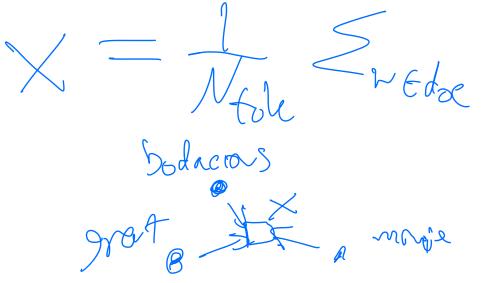


- Document embeddings
 - I. Supervised learning: Bag-of-Embeddings logreg
 - labeled train docs->labeled new docs
 - 2. Unsupervised learning / exploratory analysis
 - docs->[analysis]

- Wordlist-based inferences
 - 3. Semi-automatic dictionary expansion
 - (words->words)
 - 4. <u>DDR</u>: Distrib. Dict. Representations
 - (words->docs)

(1) Sup. learning with document embedding

- Instead of bag-of-words, can we derive a latent embedding of a document/sentence?
 - "Bag of embeddings" or "averaged word embeddings" representation
 - You can use it just like a BOW logistic regression it's just a different type of feature vector
 - Pros/cons?
- Especially for shorter texts, BoE LR typically outperforms BOW LR.



embedding (w)

See: <u>Arora et al. 2017</u>

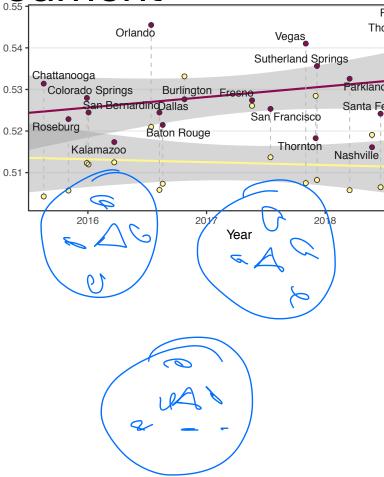
(2) Unsup. learning with document embedding Orlando 0.54

- Example: tweets about mass shootings (<u>Der</u> $\underline{5}_{0.53}$. 1. Average word embeddings => tweet embeddi

 - 2. Cluster tweets (k-means)
 - 3. Interpret clusters' words (closest to centroid)

Торіс	10 Nearest Stems
news	break, custodi, #breakingnew, #updat, confirm,
(19%)	fatal, multipl, updat, unconfirm, sever
investigation	suspect, arrest, alleg, apprehend, custodi,
(9%)	charg, accus, prosecutor, #break, ap
shooter's identity	extremist, radic, racist, ideolog, label,
& ideology (11%)	rhetor, wing, blm, islamist, christian
victims & location	bar, thousand, california, calif, among,
(4%)	los, southern, veteran, angel, via
laws & policy	sensibl, regul, requir, access, abid, #gunreformnow,
(14%)	legisl, argument, allow, #guncontolnow
solidarity	affect, senseless, ach, heart, heartbroken,
(13%)	sadden, faculti, pray, #prayer, deepest
remembrance	honor, memori, tuesday, candlelight, flown,
(6%)	vigil, gather, observ, honour, capitol
other	dude, yeah, eat, huh, gonna, ain,
(23%)	shit, ass, damn, guess

Table 1: Our eight topics (with their average proportions across events) and nearest-neighbor stem embeddings to the cluster centroids. Topic names were manually assigned based on inspecting the tweets.



within-topic

Application: keyword expansion

- I have a few keywords for my task. Are there any I missed?
- Automated or semi-automated new terms from embedding neighbors

• Other non-embedding lexical resources can do this too (e.g. WordNet), but word embeddings typically cover a *lot* of diverse vocabulary

Application: doc sim to words

- Given a word list to represent a concept, can we score a document for how much it expresses that concept?
 - Count based approach?

Application: doc sim to words

- Given a word list to represent a concept, can we score a document for how much it expresses that concept?
- DDR is a very simple embedding approach:
 - Average the word lists embeddings to create a concept vector
 - Average a doc's words to create a document vector
 - Apply cosine similarity!
- Supplying a set of keywords is *low-supervision*, or lowexpertise, approach compared to labeling docs
 - Though you don't get a nice logreg probability (until you label some...)

<u>[Garten et al. 2018]</u>

LIWC "posemo" list

accept, accepta*, accepted, accepting, accepts, active*, admir*, ador*, advantag*, adventur*, affection*, agreeab*, agreeab*, agreed, agreeing, agreement*, agrees, alright*, amaz*, amor*, amus*, aok, appreciat*, assur*, attachment*, attract*, award*, awesome, beaut*, beloved, benefic*, benefit, benefit*, benefit*, benefit*, benejn*, best, better, bless*, bold*, bonus*, brave*, bright*, brillian*, calm*, care, cared, carefue, carefue, carefue, careing, casual, casually, certain*, challeng*, champ*, charit*, charm*, cheer*, cherish*, chuckl*, clever*, comfort*, commitment*, compassion*, compliment*, confidence, confident, confidently, considerate, contented*, contentment, convinc*, cool, courag*, create*, creati*, creati*, cute*, cutie*, daring, darlin*, dear*, definite, definitely, delectabl*, delicate*, delicious*, deligh*, determina*, determined, devot*, digni*, divin*, dynam*, eager*, ease*, easie*, easiey, easing, easy*, ecsta*, efficien*, elegan*, encourag*, energ*, engag*, enjoy*, entertain*, enthus*, excel*, excit*, fab, fabulous*, faith*, fantastic*, favor*, favour*, fearless*, festiv*, fiesta*, fine, flatter*, flawless*, flexib*, flirt*, fond, fondly, fondness, forgave, forgiv*, free, freeb*, freed*, freeing, freely, freeness, freer, frees*, friend*, fun, funn*, genero*, gentle, gentler, gentlest, gently, giggl*, giver*, giving, glad, gladly, glamour*, glori*, glori*, glory, good, goodness, gorgeous*, grace, graced, graceful*, graces, graci*, grand, grande*, gratef*, grati*, great, grin, grinn*, grins, ha, haha*, handsom*, happi*, happy, harmless*, harmon*, heartfelt, heartwarm*, heaven*, heh*, helper*, helpful*, helping, helps, hero*, hilarious, hoho*, honest*, honor*, honour*, hope, hopeful, hopefully, hopefulness, hopes, hoping, hug, hugg*, hugs, humor*, humour*, humar*, ideal*, importan*, impress*, improve*, improving, incentive*, innocen*, inspir*, intell*, interest*, invigor*, joke*, joking, joll*, joy*, keen*, kidding, kind, kindly, kindn*, kiss*, laidback, laugh*, libert*, like, likeab*, liked, likes, liking, livel*, lmao, lol, love, loved, lovely, lover*, loves, loving*, loyal*, luck, lucked, lucki*, lucks, lucky, madly, magnific*, merit*, merr*, neat*, nice*, nurtur*, ok, okay, okay, okay, oks, openminded*, openness, opport*, optimal*, optimi*, original, outgoing, painl*, palatabl*, paradise, partie*, party*, passion*, peace*, perfect*, play, played, playful*, playing, plays, pleasant*, please*, pleasing, pleasur*, popular*, positiv*, prais*, precious*, prettie*, pretty, pride, privileg*, prize*, profit*, promis*, proud*, radian*, readiness, ready, reassur*, relax*, relief, reliev*, resolv*, respect, revigor*, reward*, rich*, rofl, romanc*, romantic*, safe*, satisf*, save, scrumptious*, secur*, sentimental*, share, shared, shares, sharing, silli*, silly, sincer*, smart*, smil*, sociab*, soulmate*, special, splend*, strength*, strong*, succeed*, success*, sunnier, sunniest, sunny, sunshin*, super, superior*, supported, supporter*, supporting, supportive*, supports, suprem*, sure*, surpris*, sweet, sweetheart*, sweetie*, sweetly, sweetness*, sweets, talent*, tender*, terrific*, thank, thanked, thankf*, thanks, thoughtful*, thrill*, toleran*, tranquil*, treasur*, treat, triumph*, true, trueness, truer, truest, truly, trust*, truth*, useful*, valuebl*, valued, values, valueg, valuer, valuer, valuebl*, vigour*, virtue*, virtue*, virtue*, virtue*, virtue*, warm*, wealth*, welcom*, well, win, winn*, wins, wisdom, wise*, won, wonderf*, worship*, worthwhile, wow*, yay, yays

Fig. 4 Nearest neighbors of the LIWC positive emotions dictionary

Pretraining corpus is key

- Language models—this week, word embeddings learned via LMs—enable transfer learning from the pretraining corpus, to whatever your desired end-task is
- Ideally: train on domain-specific corpus. Usually: use Wikipedia + random web pages (is this good??)
- The content of the pretraining corpus is very important!!
 - The best word embedding releases document and explore the implications of how they chose their pretraining corpus.

Word use over time [Hamilton et al. 2016]

