Word Embeddings (I)

CS 485, Fall 2024 Applications of Natural Language Processing

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

- Last week: Markov N-gram models
- Today: augment with word embeddings
 - I. Markov model
 - 2. Skip-gram model
- Why?
 - Better LMs
 - Automatically learned word representations ("word embeddings") are interesting & can be used directly (continues Thursday)

Word embeddings

- Today
 - 1. Question: how can we generally represent word meanings?
 - 2. Approach: train a language model with word embeddings to discover latent meanings of words!
 - ... which exploit the *distributional hypothesis*
- Key idea: automatically discover aspects of language meaning, from raw textual corpora

What is "asdfasdf"?

- " <u>asdfasdf</u>, Most Neglected American Fruit." NYTimes <u>1922</u>
- " <u>asdfasdf</u> Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" NYTimes <u>1942</u>
- " The <u>asdfasdf</u> is also pollinated by flies and other insects rather than by
- honeybees..."--- NYTimes 2020
- "Many people also cook with ripe <u>asdfasdf</u>, making bread, beer, ice cream, or this <u>asdfasdf</u> pudding..." NYTimes <u>2020</u>

What is a pawpaw?

I. Look it up in a dictionary

https://www.merriam-webster.com/ https://www.oed.com/ https://en.wiktionary.org/

pawpaw noun

paw·paw variants: *or less commonly* **papaw**

Definition of *pawpaw*

1 \ pə-'po 🕥 \ : <u>PAPAYA</u>

2 \ 'pä-(,)po , 'po- \: a North American tree (*Asimina triloba*) of the custard-apple family with purple flowers and an edible green-skinned fruit

also: its fruit

II. Look it at how its used

- " <u>Pawpaw</u>, Most Neglected American Fruit." NYTimes <u>1922</u>
- " <u>**Pawpaw</u>** Recommended by U.S. Food Experts, Along With Persimmon, as War Nutrition" NYTimes <u>1942</u></u>

" The <u>pawpaw</u> is also pollinated by flies and other insects rather than by honeybees..." — NYTimes 2020

"Many people also cook with ripe **<u>pawpaws</u>**, making bread, beer, ice cream, or this **<u>pawpaw</u>** pudding..." — NYTimes <u>2020</u>

II. Look it at how its used

- "*Pawpaw*, Most Neglected <u>American Fruit</u>." NYTimes <u>1922</u>
- "*Pawpaw* Recommended by U.S. Food Experts, Along With **<u>Persimmon</u>**, as War <u>**Nutrition**</u>" NYTimes <u>1942</u>

"The *pawpaw* is also **pollinated** by **flies** and other insects rather than by honeybees..."—NYTimes <u>2020</u>

"Many people also <u>cook</u> with <u>ripe</u> pawpaws, making <u>bread</u>, <u>beer</u>, <u>ice</u> <u>cream</u>, or this pawpaw <u>pudding</u> ..." — NYTimes <u>2020</u>

Aspects of word meaning

Synonyms

- \cdot couch / sofa
- \cdot oculist / eye doctor
- \cdot car / automobile
- \cdot water / H₂O
- \cdot draft / draught

Antonyms

- · yes / no
- \cdot dark / light
- \cdot hot / cold
- \cdot up / down
- \cdot clip / clip

Aspects of word meaning

Similarity

- \cdot cat / dog
- \cdot cardiologist / pulmonologist
- \cdot car / bus
- \cdot sheep / goat
- \cdot glass / mug

Relatedness

- \cdot coffee / cup
- \cdot waiter / menu
- \cdot farm / cow
- \cdot house / roof
- \cdot theater / actor

Aspects of word meaning

- Connotation: the affective meaning of a word
- Osgood (1957)'s three-dimensional model:
 - Valence
 - unhappy, annoyed <-----> happy, satisfied
 - Arousal
 - calm <-----> excited
 - Dominance
 - awed, influences <-----> controlling

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24

Word embeddings/vectors

- We need a representation of words capable of synonyms, rough similarity, or maybe even other aspects of meaning
- Give each word a k-dimensional **vector**
 - a vector is a list of numbers
 - a vector is a point/direction in k-dimensional space

Learning word representations

- How to get word meanings?
 - Lexical resources like WordNet: dictionary-like databases of word synonyms & other word-toword relationships, constructed manually
 - Can sometimes help, but typically don't cover all words or meanings any particular task needs
- OK, can we *learn* the word representations instead?

Distributional Semantics

"You shall know a word by the company it keeps!" — Firth (1957)

Intuitions: <u>Harris (1954)</u>

"If A and B have almost identical environments except chiefly sentences which contain both, we say they are synonyms: *oculist* and *eye- doctor*."

Learning word representations

- Could we automatically *learn* word meanings?
 - I.We'd like to generalize word meanings beyond individual words, and
 - 2. Information from nearby words gives information about a word
- What model have we seen, that uses information from nearby words to make inferences about another word?

- Two word-embedding-based LMs
 - I. Markovian left-to-right LM (Bengio et al. 2003)
 - 2. "Skip-gram" LM
 - Learns useful standalone embeddings

Left-to-right LM as log. reg.

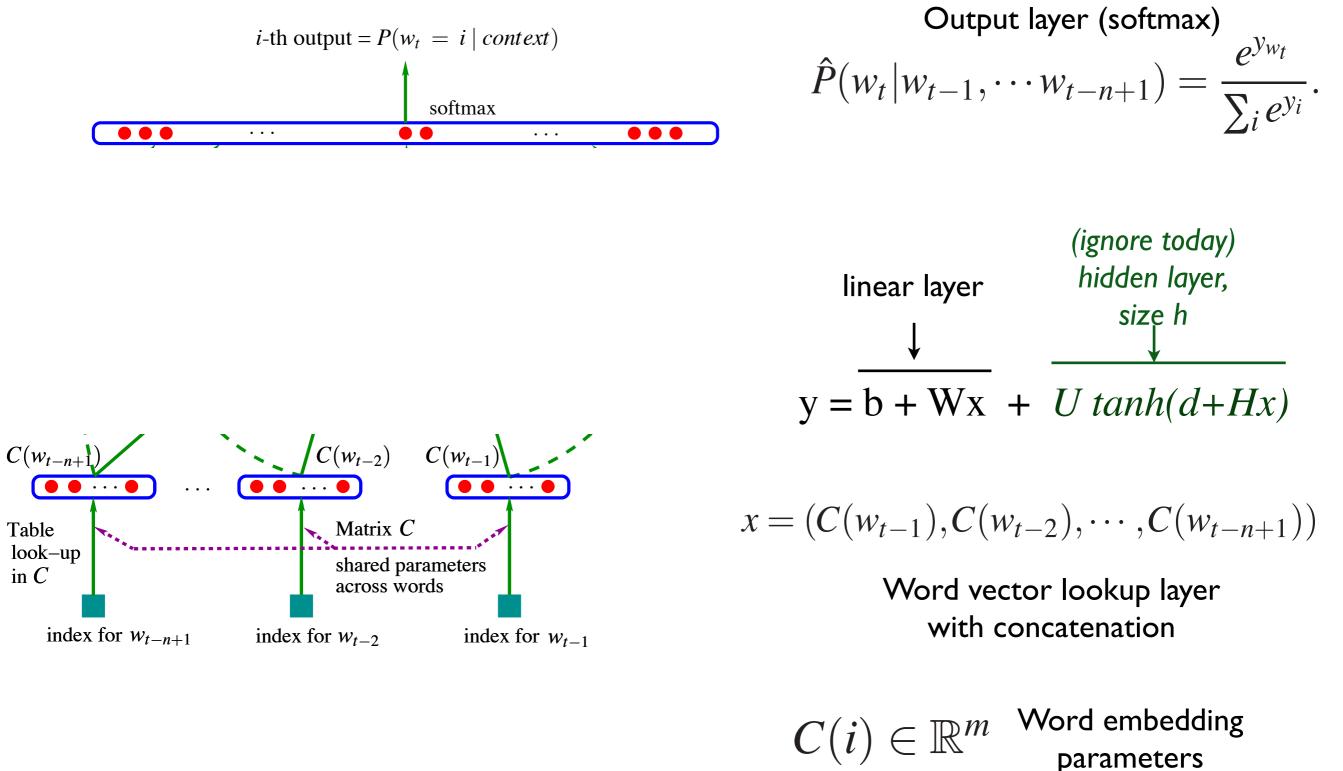
- Instead of only n-gram count ratios, model the nextword as softmax over the vocabulary.
- We can use anything to help predictions: features (Rosenfeld 1996) or neural networks (Bengio et al. 2003) to compose V_u:

$$\mathbf{p}(w \mid u) = \frac{\exp(\boldsymbol{\beta}_w \cdot \boldsymbol{v}_u)}{\sum_{w' \in \mathcal{V}} \exp(\boldsymbol{\beta}_{w'} \cdot \boldsymbol{v}_u)} \quad \boldsymbol{\beta}_w \in \mathbb{R}^K$$

• Can use any information from the left context: long-distance topical information, or word vectors!

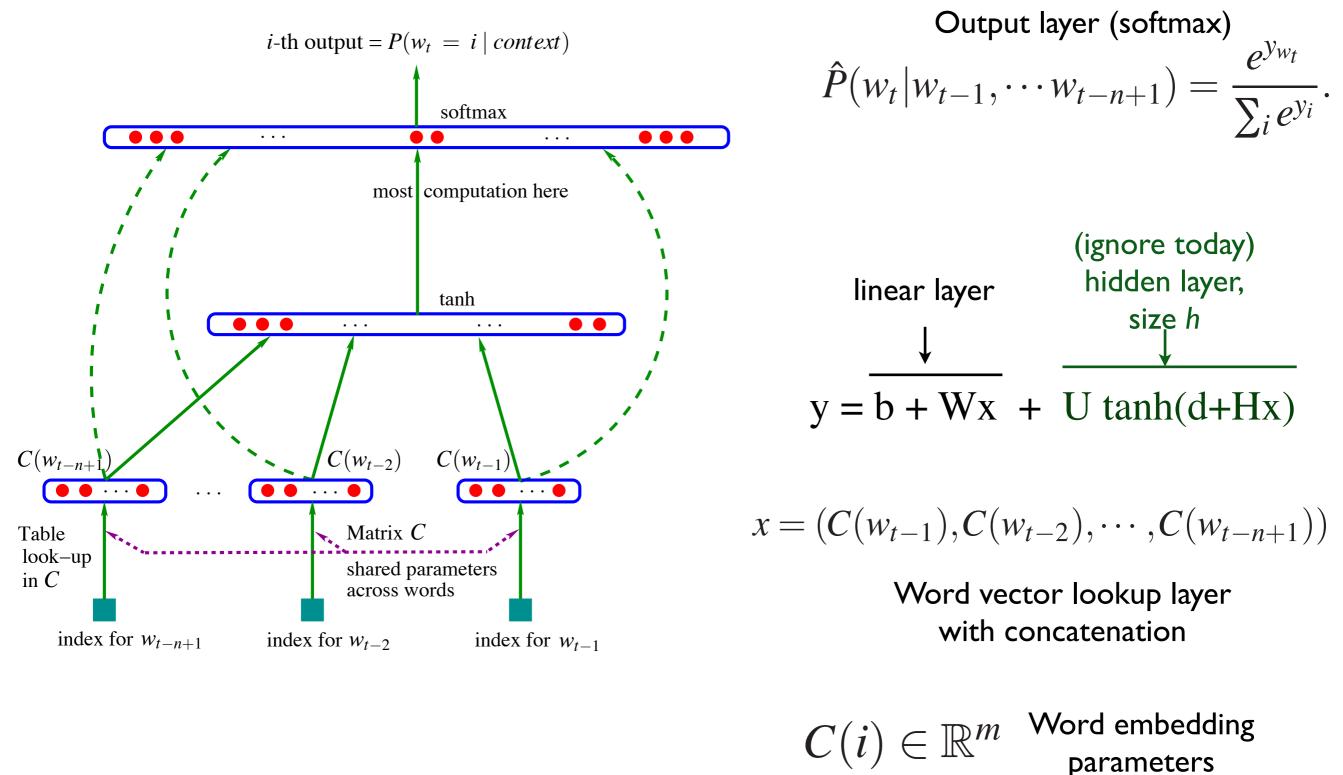
Bengio et al. 2003: Markov word embedding LM

Key idea: represent words on left as **vectors.** Learn a vector for each word in the vocabulary. Better perplexity than an n-gram LM!

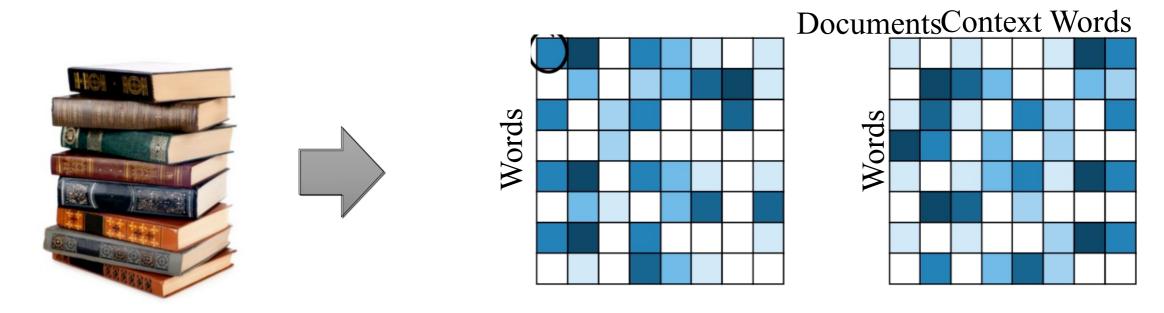


Bengio et al. 2003: Markov word embedding LM

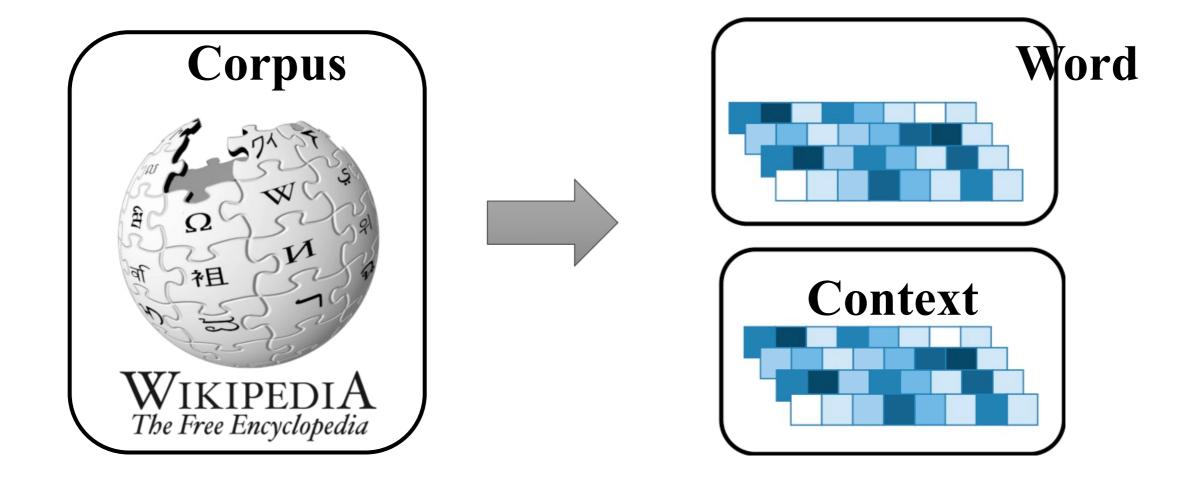
Key idea: represent words on left as **vectors.** Learn a vector for each word in the vocabulary.



Build vectors based on context



Neural Word Embeddings



Skip- Gram with Negative Sampling (SGNS)

The brown fox **jumps** over the lazy dog

<u>SG</u>NS: Skip- Gram Model

The brown fox jumps over the lazy dog.

<u>SG</u> NS: Skip- Gram Model

The brown fox jumps over the lazy dog.

Simple idea: from a word, predict its context words! (A funny type of language model.) Learn a vector that's good at that. Similar words should get similar vectors. Key idea: use unlabeled text as implicitly supervised data

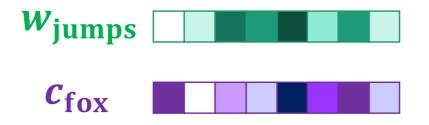
- A word *s* near *apricot*
 - Acts as gold 'correct answer' to the question
 - "Is word w likely to show up near apricot?"
- No need for hand-labeled supervision
- The idea comes from neural language modeling
 - Bengio et al. (2003)
 - Collobert et al. (2011)

Modeling goal

- Given a (word, context) tuple
 - [+] (apricot, jam) <- observed
 - [-] (apricot, aardvark) <- unseen
- Want binary probability
 - P(c | w) for a real context [+])
 - 1-P(c | w) for a "fake", unseen context [-])
- Let u_t and v_c be their vectors.
- $P(c \mid w) = \sigma(u_w'v_c)$: logistic in their *affinity/similarity*
- Maximize P(c | w) for all (w, c) pairs

SG<u>NS</u> : Negative Sampling

Co-occurrence jumps, fox:



SG<u>NS</u> : Negative Sampling

Co-occurrence jumps, fox:

