
Word Embeddings (I)

CS 485, Fall 2024  
Applications of Natural Language Processing

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

• Last week: Markov N-gram models

• Today: augment with word embeddings

• 1. Markov model

• 2. Skip-gram model

• Why?

• Better LMs

• Automatically learned word representations
("word embeddings") are interesting & can be used
directly (continues Thursday)

2

• Today
• 1. Question: how can we generally represent word meanings?
• 2. Approach: train a language model with word embeddings to

discover latent meanings of words!
• ... which exploit the distributional hypothesis

• Key idea: automatically discover aspects of language
meaning, from raw textual corpora

3

Word embeddings

What is "asdfasdf"?

“ asdfasdf, Most Neglected American Fruit.” — NYTimes 1922

“ asdfasdf Recommended by U.S. Food Experts, Along With
 Persimmon, as War Nutrition” — NYTimes 1942

“ The asdfasdf is also pollinated by flies and other insects rather
than by
 honeybees…”— NYTimes 2020

“Many people also cook with ripe asdfasdf, making bread, beer, ice
 cream, or this asdfasdf pudding…” — NYTimes 2020

 What is a pawpaw ?

 I. Look it up in a dictionary

 https://www.merriam-webster.com/
 https://www.oed.com/
 https://en.wiktionary.org/

 Lemma

 Word
 Senses

 Definition

 II. Look it at how its used

 “ Pawpaw, Most Neglected American Fruit.” — NYTimes 1922

 “ Pawpaw Recommended by U.S. Food Experts, Along With
 Persimmon, as War Nutrition” — NYTimes 1942

 “ The pawpaw is also pollinated by flies and other insects rather than by
 honeybees…”— NYTimes 2020

 “Many people also cook with ripe pawpaws, making bread, beer, ice
 cream, or this pawpaw pudding…” — NYTimes 2020

 II. Look it at how its used

 “ Pawpaw, Most Neglected American Fruit .” — NYTimes 1922

 “ Pawpaw Recommended by U.S. Food Experts, Along With
 Persimmon , as War Nutrition ” — NYTimes 1942

 “ The pawpaw is also pollinated by flies and other insects rather than by
 honeybees…”— NYTimes 2020

 “Many people also cook with ripe pawpaws , making bread , beer, ice
 cream , or this pawpaw pudding …” — NYTimes 2020

 Synonyms
 · couch / sofa
 · oculist / eye - doctor
 · car / automobile
 · water / H2 O

 · draft / draught

 Antonyms
 · yes / no
 · dark / light
 · hot / cold
 · up / down
 · clip / clip

Aspects of word meaning
Cattle card C atomobiled

othersenses b

c
0T

Toxund chore

c

 Similarity
 · cat / dog
 · cardiologist / pulmonologist
 · car / bus
 · sheep / goat
 · glass / mug

 Relatedness
 · coffee / cup
 · waiter / menu
 · farm / cow
 · house / roof
 · theater / actor

Aspects of word meaning

• Connotation: the affective meaning of a word

• Osgood (1957)'s three-dimensional model:

• Valence

• unhappy, annoyed <---------------> happy, satisfied

• Arousal

• calm <---------------> excited

• Dominance

• awed, influences <---------------> controlling

13

6.2 • VECTOR SEMANTICS 5

Valence Arousal Dominance
courageous 8.05 5.5 7.38
music 7.67 5.57 6.5
heartbreak 2.45 5.65 3.58
cub 6.71 3.95 4.24

Osgood et al. (1957) noticed that in using these 3 numbers to represent the
meaning of a word, the model was representing each word as a point in a three-
dimensional space, a vector whose three dimensions corresponded to the word’s
rating on the three scales. This revolutionary idea that word meaning could be rep-
resented as a point in space (e.g., that part of the meaning of heartbreak can be
represented as the point [2.45,5.65,3.58]) was the first expression of the vector se-
mantics models that we introduce next.

6.2 Vector Semantics

Vector semantics is the standard way to represent word meaning in NLP, helpingvector
semantics

us model many of the aspects of word meaning we saw in the previous section. The
roots of the model lie in the 1950s when two big ideas converged: Osgood’s 1957
idea mentioned above to use a point in three-dimensional space to represent the
connotation of a word, and the proposal by linguists like Joos (1950), Harris (1954),
and Firth (1957) to define the meaning of a word by its distribution in language
use, meaning its neighboring words or grammatical environments. Their idea was
that two words that occur in very similar distributions (whose neighboring words are
similar) have similar meanings.

For example, suppose you didn’t know the meaning of the word ongchoi (a re-
cent borrowing from Cantonese) but you see it in the following contexts:

(6.1) Ongchoi is delicious sauteed with garlic.
(6.2) Ongchoi is superb over rice.
(6.3) ...ongchoi leaves with salty sauces...

And suppose that you had seen many of these context words in other contexts:

(6.4) ...spinach sauteed with garlic over rice...
(6.5) ...chard stems and leaves are delicious...
(6.6) ...collard greens and other salty leafy greens

The fact that ongchoi occurs with words like rice and garlic and delicious and
salty, as do words like spinach, chard, and collard greens might suggest that ongchoi
is a leafy green similar to these other leafy greens.1 We can do the same thing
computationally by just counting words in the context of ongchoi.

The idea of vector semantics is to represent a word as a point in a multidimen-
sional semantic space that is derived (in ways we’ll see) from the distributions of
word neighbors. Vectors for representing words are called embeddings (althoughembeddings

the term is sometimes more strictly applied only to dense vectors like word2vec
(Section 6.8), rather than sparse tf-idf or PPMI vectors (Section 6.3-Section 6.6)).
The word “embedding” derives from its mathematical sense as a mapping from one
space or structure to another, although the meaning has shifted; see the end of the
chapter.

1 It’s in fact Ipomoea aquatica, a relative of morning glory sometimes called water spinach in English.

Aspects of word meaning

A

Word embeddings/vectors

• We need a representation of words capable of
synonyms, rough similarity, or maybe even other
aspects of meaning

• Give each word a k-dimensional vector
• a vector is a list of numbers

• a vector is a point/direction in k-dimensional space

14

A
k 100

WEV Xn GIRK in

1919

Learning word representations

• How to get word meanings?

• Lexical resources like WordNet: dictionary-like
databases of word synonyms & other word-to-
word relationships, constructed manually

• Can sometimes help, but typically don't cover all words
or meanings any particular task needs

• OK, can we learn the word representations
instead?

15

 Distributional Semantics

 “You shall know a word by the company it keeps!” — Firth (1957)

 Intuitions: Harris (1954)

 “If A and B have almost identical environments except chiefly sentences
 which contain both, we say they are synonyms: oculist and eye- doctor .”

• Could we automatically learn word meanings?

• 1. We'd like to generalize word meanings beyond
individual words, and

• 2. Information from nearby words gives information
about a word

• What model have we seen, that uses
information from nearby words to make
inferences about another word?

17

Learning word representations

Trevor

n gram CMs

• Two word-embedding-based LMs

• 1. Markovian left-to-right LM (Bengio et al. 2003)

• 2. "Skip-gram" LM

• Learns useful standalone embeddings

18

Left-to-right LM as log. reg.
• Instead of only n-gram count ratios, model the next-

word as softmax over the vocabulary.
• We can use anything to help predictions: features

(Rosenfeld 1996) or neural networks (Bengio et al.
2003) to compose vu:

19

134 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is
a word, and u is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.25]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see § 3.1) to the vector of dot-products,

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.26]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of November 13, 2018.

134 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is
a word, and u is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.25]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see § 3.1) to the vector of dot-products,

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.26]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of November 13, 2018.

134 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is
a word, and u is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.25]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see § 3.1) to the vector of dot-products,

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.26]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of November 13, 2018.

• Can use any information from the left context:
long-distance topical information, or word vectors!

edit
EMEA A

word

6 length

next mom

20

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

A NEURAL PROBABILISTIC LANGUAGE MODEL

The yi are the unnormalized log-probabilities for each output word i, computed as follows, with
parameters b,W ,U ,d and H:

y= b+Wx+U tanh(d+Hx) (1)

where the hyperbolic tangent tanh is applied element by element, W is optionally zero (no direct
connections), and x is the word features layer activation vector, which is the concatenation of the
input word features from the matrix C:

x= (C(wt�1),C(wt�2), · · · ,C(wt�n+1)).

Let h be the number of hidden units, andm the number of features associated with each word. When
no direct connections from word features to outputs are desired, the matrixW is set to 0. The free
parameters of the model are the output biases b (with |V | elements), the hidden layer biases d (with
h elements), the hidden-to-output weightsU (a |V |⇥h matrix), the word features to output weights
W (a |V |⇥ (n� 1)m matrix), the hidden layer weights H (a h⇥ (n� 1)m matrix), and the word
features C (a |V |⇥m matrix):

θ= (b,d,W,U,H,C).

The number of free parameters is |V |(1+ nm+ h) + h(1+ (n� 1)m). The dominating factor is
|V |(nm+ h). Note that in theory, if there is a weight decay on the weightsW and H but not on C,
thenW and H could converge towards zero while C would blow up. In practice we did not observe
such behavior when training with stochastic gradient ascent.

Stochastic gradient ascent on the neural network consists in performing the following iterative
update after presenting the t-th word of the training corpus:

θ θ+ ε
∂ log P̂(wt |wt�1, · · ·wt�n+1)

∂θ

where ε is the “learning rate”. Note that a large fraction of the parameters needs not be updated
or visited after each example: the word features C(j) of all words j that do not occur in the input
window.
Mixture of models. In our experiments (see Section 4) we have found improved performance by

combining the probability predictions of the neural network with those of an interpolated trigram
model, either with a simple fixed weight of 0.5, a learned weight (maximum likelihood on the
validation set) or a set of weights that are conditional on the frequency of the context (using the
same procedure that combines trigram, bigram, and unigram in the interpolated trigram, which is a
mixture).

3. Parallel Implementation

Although the number of parameters scales nicely, i.e. linearly with the size of the input window and
linearly with the size of the vocabulary, the amount of computation required for obtaining the output
probabilities is much greater than that required from n-gram models. The main reason is that with
n-gram models, obtaining a particular P(wt |wt�1, . . . ,wt�n+1) does not require the computation of
the probabilities for all the words in the vocabulary, because of the easy normalization (performed
when training the model) enjoyed by the linear combinations of relative frequencies. The main
computational bottleneck with the neural implementation is the computation of the activations of
the output layer.

1143

Word vector lookup layer
with concatenation

Bengio et al. 2003: Markov word embedding LM

(ignore today)
hidden layer,

size h
linear layer

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Output layer (softmax)

A NEURAL PROBABILISTIC LANGUAGE MODEL

and McCallum, 1998): each word is associated deterministically or probabilistically with a discrete
class, and words in the same class are similar in some respect. In the model proposed here, instead
of characterizing the similarity with a discrete random or deterministic variable (which corresponds
to a soft or hard partition of the set of words), we use a continuous real-vector for each word, i.e.
a learned distributed feature vector, to represent similarity between words. The experimental
comparisons in this paper include results obtained with class-based n-grams (Brown et al., 1992,
Ney and Kneser, 1993, Niesler et al., 1998).

The idea of using a vector-space representation for words has been well exploited in the area of
information retrieval (for example see work by Schutze, 1993), where feature vectors for words are
learned on the basis of their probability of co-occurring in the same documents (Latent Semantic
Indexing, see Deerwester et al., 1990). An important difference is that here we look for a repre-
sentation for words that is helpful in representing compactly the probability distribution of word
sequences from natural language text. Experiments suggest that learning jointly the representation
(word features) and the model is very useful. We tried (unsuccessfully) using as fixed word features
for each word w the first principal components of the co-occurrence frequencies of w with the words
occurring in text around the occurrence of w. This is similar to what has been done with documents
for information retrieval with LSI. The idea of using a continuous representation for words has how-
ever been exploited successfully by Bellegarda (1997) in the context of an n-gram based statistical
language model, using LSI to dynamically identify the topic of discourse.

The idea of a vector-space representation for symbols in the context of neural networks has also
previously been framed in terms of a parameter sharing layer, (e.g. Riis and Krogh, 1996) for
secondary structure prediction, and for text-to-speech mapping (Jensen and Riis, 2000).

2. A Neural Model

The training set is a sequence w1 · · ·wT of words wt 2 V , where the vocabulary V is a large but
finite set. The objective is to learn a good model f (wt , · · · ,wt�n+1) = P̂(wt |wt�11), in the sense that
it gives high out-of-sample likelihood. Below, we report the geometric average of 1/P̂(wt |wt�11),
also known as perplexity, which is also the exponential of the average negative log-likelihood. The
only constraint on the model is that for any choice of wt�11 , ∑|V |

i=1 f (i,wt�1, · · · ,wt�n+1) = 1, with
f > 0. By the product of these conditional probabilities, one obtains a model of the joint probability
of sequences of words.

We decompose the function f (wt , · · · ,wt�n+1) = P̂(wt |wt�11) in two parts:

1. A mappingC from any element i of V to a real vector C(i) 2Rm. It represents the distributed
feature vectors associated with each word in the vocabulary. In practice, C is represented by
a |V |⇥m matrix of free parameters.

2. The probability function over words, expressed with C: a function g maps an input sequence
of feature vectors for words in context, (C(wt�n+1), · · · ,C(wt�1)), to a conditional probability
distribution over words in V for the next word wt . The output of g is a vector whose i-th
element estimates the probability P̂(wt = i|wt�11) as in Figure 1.

f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1))

The function f is a composition of these two mappings (C and g), with C being shared across
all the words in the context. With each of these two parts are associated some parameters. The

1141

Word embedding
parameters

Key idea: represent words on left as vectors. Learn a vector for each word in the vocabulary.
Better perplexity than an n-gram LM!

y = b + Wx + U tanh(d+Hx)

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

a

Fffff of
0000 XERF m.name

load in when
Emma

a
At

21

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

A NEURAL PROBABILISTIC LANGUAGE MODEL

The yi are the unnormalized log-probabilities for each output word i, computed as follows, with
parameters b,W ,U ,d and H:

y= b+Wx+U tanh(d+Hx) (1)

where the hyperbolic tangent tanh is applied element by element, W is optionally zero (no direct
connections), and x is the word features layer activation vector, which is the concatenation of the
input word features from the matrix C:

x= (C(wt�1),C(wt�2), · · · ,C(wt�n+1)).

Let h be the number of hidden units, andm the number of features associated with each word. When
no direct connections from word features to outputs are desired, the matrixW is set to 0. The free
parameters of the model are the output biases b (with |V | elements), the hidden layer biases d (with
h elements), the hidden-to-output weightsU (a |V |⇥h matrix), the word features to output weights
W (a |V |⇥ (n� 1)m matrix), the hidden layer weights H (a h⇥ (n� 1)m matrix), and the word
features C (a |V |⇥m matrix):

θ= (b,d,W,U,H,C).

The number of free parameters is |V |(1+ nm+ h) + h(1+ (n� 1)m). The dominating factor is
|V |(nm+ h). Note that in theory, if there is a weight decay on the weightsW and H but not on C,
thenW and H could converge towards zero while C would blow up. In practice we did not observe
such behavior when training with stochastic gradient ascent.

Stochastic gradient ascent on the neural network consists in performing the following iterative
update after presenting the t-th word of the training corpus:

θ θ+ ε
∂ log P̂(wt |wt�1, · · ·wt�n+1)

∂θ

where ε is the “learning rate”. Note that a large fraction of the parameters needs not be updated
or visited after each example: the word features C(j) of all words j that do not occur in the input
window.
Mixture of models. In our experiments (see Section 4) we have found improved performance by

combining the probability predictions of the neural network with those of an interpolated trigram
model, either with a simple fixed weight of 0.5, a learned weight (maximum likelihood on the
validation set) or a set of weights that are conditional on the frequency of the context (using the
same procedure that combines trigram, bigram, and unigram in the interpolated trigram, which is a
mixture).

3. Parallel Implementation

Although the number of parameters scales nicely, i.e. linearly with the size of the input window and
linearly with the size of the vocabulary, the amount of computation required for obtaining the output
probabilities is much greater than that required from n-gram models. The main reason is that with
n-gram models, obtaining a particular P(wt |wt�1, . . . ,wt�n+1) does not require the computation of
the probabilities for all the words in the vocabulary, because of the easy normalization (performed
when training the model) enjoyed by the linear combinations of relative frequencies. The main
computational bottleneck with the neural implementation is the computation of the activations of
the output layer.

1143

Word vector lookup layer
with concatenation

(ignore today)
hidden layer,

size h
linear layer

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Output layer (softmax)

A NEURAL PROBABILISTIC LANGUAGE MODEL

and McCallum, 1998): each word is associated deterministically or probabilistically with a discrete
class, and words in the same class are similar in some respect. In the model proposed here, instead
of characterizing the similarity with a discrete random or deterministic variable (which corresponds
to a soft or hard partition of the set of words), we use a continuous real-vector for each word, i.e.
a learned distributed feature vector, to represent similarity between words. The experimental
comparisons in this paper include results obtained with class-based n-grams (Brown et al., 1992,
Ney and Kneser, 1993, Niesler et al., 1998).

The idea of using a vector-space representation for words has been well exploited in the area of
information retrieval (for example see work by Schutze, 1993), where feature vectors for words are
learned on the basis of their probability of co-occurring in the same documents (Latent Semantic
Indexing, see Deerwester et al., 1990). An important difference is that here we look for a repre-
sentation for words that is helpful in representing compactly the probability distribution of word
sequences from natural language text. Experiments suggest that learning jointly the representation
(word features) and the model is very useful. We tried (unsuccessfully) using as fixed word features
for each word w the first principal components of the co-occurrence frequencies of w with the words
occurring in text around the occurrence of w. This is similar to what has been done with documents
for information retrieval with LSI. The idea of using a continuous representation for words has how-
ever been exploited successfully by Bellegarda (1997) in the context of an n-gram based statistical
language model, using LSI to dynamically identify the topic of discourse.

The idea of a vector-space representation for symbols in the context of neural networks has also
previously been framed in terms of a parameter sharing layer, (e.g. Riis and Krogh, 1996) for
secondary structure prediction, and for text-to-speech mapping (Jensen and Riis, 2000).

2. A Neural Model

The training set is a sequence w1 · · ·wT of words wt 2 V , where the vocabulary V is a large but
finite set. The objective is to learn a good model f (wt , · · · ,wt�n+1) = P̂(wt |wt�11), in the sense that
it gives high out-of-sample likelihood. Below, we report the geometric average of 1/P̂(wt |wt�11),
also known as perplexity, which is also the exponential of the average negative log-likelihood. The
only constraint on the model is that for any choice of wt�11 , ∑|V |

i=1 f (i,wt�1, · · · ,wt�n+1) = 1, with
f > 0. By the product of these conditional probabilities, one obtains a model of the joint probability
of sequences of words.

We decompose the function f (wt , · · · ,wt�n+1) = P̂(wt |wt�11) in two parts:

1. A mappingC from any element i of V to a real vector C(i) 2Rm. It represents the distributed
feature vectors associated with each word in the vocabulary. In practice, C is represented by
a |V |⇥m matrix of free parameters.

2. The probability function over words, expressed with C: a function g maps an input sequence
of feature vectors for words in context, (C(wt�n+1), · · · ,C(wt�1)), to a conditional probability
distribution over words in V for the next word wt . The output of g is a vector whose i-th
element estimates the probability P̂(wt = i|wt�11) as in Figure 1.

f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1))

The function f is a composition of these two mappings (C and g), with C being shared across
all the words in the context. With each of these two parts are associated some parameters. The

1141

Word embedding
parameters

y = b + Wx + U tanh(d+Hx)

Bengio et al. 2003: Markov word embedding LM
Key idea: represent words on left as vectors.
Learn a vector for each word in the vocabulary.

 Documents Context Words

 W
or

ds

 W
or

ds

Build vectors based on context
Dots to

08

 Neural Word Embeddings
 Corpus Word

 Context

 Skip- Gram with Negative Sampling (SGNS)

 The brown fox jumps over the lazy dog

Word 2 Vec

 SG NS: Skip- Gram Model

 The brown fox jumps over the lazy dog.
 Context Window Size = 2

contextwindow size22

1 PT
w

jumps brown f over the

PG bin w jus

 SG NS: Skip- Gram Model

 The brown fox jumps over the lazy dog.
 Context Window Size = 2

Simple idea: from a word, predict its context words!
(A funny type of language model.)

Learn a vector that's good at that. Similar words should get
similar vectors.

similar
u

Treat
ME

27

Brilliant insight: Use running text as
implicitly supervised training data!

• A word s near apricot
• Acts as gold ‘correct answer’ to the

question
• “Is word w likely to show up near apricot?”
• No need for hand-labeled supervision
• The idea comes from neural language

modeling
• Bengio et al. (2003)
• Collobert et al. (2011)

Key idea: use unlabeled text as implicitly supervised data

Modeling goal
• Given a (word, context) tuple

• [+] (apricot, jam) <- observed
• [–] (apricot, aardvark) <- unseen

• Want binary probability
• P(c | w) for a real context [+])
• 1-P(c | w) for a “fake”, unseen context [–])

• Let ut and vc be their vectors.
• P(c | w) = σ(uw’vc): logistic in their affinity/similarity
• Maximize P(c | w) for all (w, c) pairs

28

Nw target
had vec

To Vc ctx.net

IN_
ITIS

o vain Vjam want near

O Uaint Vaardiak want near 0

 SGNS : Negative SamplingSGNS: Negative Sampling

Co-occurrence 𝐣𝐮𝐦𝐩𝐬 , 𝐟𝐨𝐱:

𝒘𝐣𝐮𝐦𝐩𝐬

𝒄𝐟𝐨𝐱
𝒘𝐣𝐮𝐦𝐩𝐬 𝒄𝐟𝐨𝐱

SGNS: Negative Sampling

Co-occurrence 𝐣𝐮𝐦𝐩𝐬 , 𝐟𝐨𝐱:

𝒘𝐣𝐮𝐦𝐩𝐬

𝒄𝐟𝐨𝐱

𝒄𝒏𝒆𝒈 𝒄𝒏𝒆𝒈

𝒘𝐣𝐮𝐦𝐩𝐬 𝒄𝐟𝐨𝐱

𝑺

 SGNS : Negative Sampling

YESSSS

Sim Wiums Wleeps
e

31

