N-Gram Language Models

CS 485, Fall 2024
Applications of Natural Language Processing

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

[slides from SLP3 and Mohit lyyer]

goal: assign probability to a
plece of text

* (Goal #1: assign probability to a piece of text

* translation:
e P(i flew to the movies) <<<<< P(i went to the movies)

* Speech recognition:
e P(i saw a van) >>>>> P(eyes awe of an)

e text classification (NB):
« P(iam so mad!! | f[author is happy]) <
P(i am so mad!! | [author is not happy])

* Goal #2: generate text from this defined probability distribution

Probabilistic Language Modeling

* Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(W;,W5,W3,W/,Wc.. W,)

* Related task: probability of an upcoming word:

P(Ws | Wy,Wy,W3,W,)

* A model that computes either of these:
P(W) or P(w,|w,,w,..w,) 1S called a language model or LM

How to compute P(W)

* How to compute this joint probability:

*P(its, water, is, so, transparent, that)

* Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

* Recall the definition of conditional probabilities
P(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

* More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

* The Chain Rule in General
P(X;,X5,X5,000,X) = P(X;)P (X, | X)P(X51X1,X5) e e P(X, [X4 5000, X 1)

LM as next-word prob

The Chain Rule applied to compute joint
porobability of words in sentence

Pww,...w)= HP(wi lww,...w,_,)

P(“its water is so transparent”) =
P(its) x P(water|its) x P(is|its water)
x P(so|its water is) x P(transparent|its water is so)

let's try one step!

6

LM as next-word prob

e I'll meet you at the © >

How to estimate these probabillities

* Could we just count and divide?

P(the |its water is so transparent that) =

Count(its water 1s so transparent that the)

Count(its water 1s so transparent that)

How to estimate these probabillities

* Could we just count and divide?

P(the |its water is so transparent that) =

Count(its water 1s so transparent that the)

Count(its water 1s so transparent that)

* No! Too many possible sentences!
* We’ll never see enough data for estimating these

Markov Assumption

* Simplifying assumption:

Andrei Markov (1856~1922)

P(the |its water is so transparent that) = P(the |that)

* Or maybe
P(the |its water is so transparent that) = P(the |transparent that)

Markov Assumption

Piww,..w)= HP(Wi w._ ..ow.)

* In other words, we approximate each
component in the product

Pw lww,..w._)=Pw Ilw_ ..w._)

Simplest case: Unigram model
Pww,...w)= HP(Wi)

Some automatically generated sentences from a unigram model:

fifth, an, of, futures, the, an, incorporated, a, a,
the, inflation, most, dollars, quarter, 1in, 1s, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Approximating Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
"tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

N-gram models

e (Can extend n-grams to higher n...

e N-gram models are surprisingly useful; state
of the art for >50 years!

e But this is an insufficient model of language
 |Long-distance dependencies
 |anguage is compositional
 (Generalize effects beyond distinct words

-stimating bigram probabillities

« The Maximum Likelihood Estimate (MLE)
- relative frequency based on the empirical counts on a

training set count(W W)
AW, [w.,) = S
count(w.,)

P(w, | w,,) = W)

c — count
aw.,)

An example

WE (W, W) <s> | am Sam </s>
P(w | w_)=——""" <s> Sam | am </s>
aw,) <s> | do not like green eggs and ham </s>

»

S—
|

I

| —
-

v

P(Sam|<s>) = 7?77
P(Sam|am) =777

P(I|<s>)=%=.6
P(</s>|Sam

l|l

|

An example

WE (W, W) <s> | am Sam </s>
P(w | w_)=——""" <s> Sam | am </s>
aw,) <s> | do not like green eggs and ham </s>

|
o)
~J
pa,
n
)]
3
A
()
\J
|
(29| =t
|
pa,
V)]
=
H
|
|
W O
~J

Iw

=
A
~
n
V
N
)
2
|
9| =
|
-
i
)
0]
4))
=
4))
g
|
9| =
|
s
)
Q.
O
H
|
29— LI
|

A bigger example:
Berkeley Restaurant Project sentences

» can you tell me about any good cantonese restaurants
close by

* mid priced thai food is what i’m looking for
* tell me about chez panisse

* can you give me a listing of the kinds of food that are
available

*i’m looking for a good place to eat breakfast
* when is caffe venezia open during the day

Raw bigram counts

* Qut of 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities gy |y, ye CWer W)
o Awy)

* Normalize by unigrams:

1 want to eat chinese food lunch spend
. Resuylt: 2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food lunch | spend

1 0.002 033 |0 0.0036| 0 0 0 0.00079
want 0.0022 | 0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017 1 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.00271 0 0.021 0.002710.056 [0
chinese || 0.0063 | O 0 0 0 0.52 0.0063 | 0
food 0.014 0 0.014 |0 0.00092 | 0.0037 | 0O 0
lunch 0.0059 |0 0 0 0 0.0029 1 0 0
spend || 0.0036 | O 0.0036 | O 0 0 0 0

20

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) =
P(l|<s>)

x P(want|l)

x P(english |want)
x P(food|english)
x P(</s>|food)

= .000031

these probabillities get super tiny when we
have longer inputs w/ more infrequent
words... how can we get around this?

21

What kinds of knowledge”

*P(english|want) = .0011 ~ abot the worl

(

(chinese|want) = .0065
(to|want) = .66 % grammar — infinitive verb
(eat | to) = .28
(
(

food | to) =0 - om
*P(want | spend) =0 grammar
P(i]| <s>)=.25

22

Evaluation

e Does the model give higher probability to real text?
e ..inthe test set (why?)

Intuition of Perplexity

mushrooms 0.1
 The Shannon Game: ’

« How well can we predict the next word?
| always order pizza with cheese and < anchovies 0.01

The 33 President of the US was

Claude Shannon
(1916~2001)

pepperoni 0.1

fried rice 0.0001
| saw a

« Unigrams are terrible at this game. (Why?)
» A better model of a text

* is one which assigns a higher probability to the word that actually occurs

« compute per word log likelihood
(M words, m test sentence s;)

\and 1e-100

1 mnl
[= i z; log p(s;)

23

Perplexity

The best language model is one that best predicts an unseen test set

e Gives the highest P(sentence) |

_ N
Perplexity is the inverse probability of PECW) Plwws..wy)

the test set, normalized by the number 1
of words: =]</P(w1w2...wN)
: N
Chain rule: PP(W) = ‘\\];[1 BT D)
For bigrams: N
PP(W) = {\\IEPMM y

Minimizing perplexity is the same as maximizing probability

24

Perplexity and log-likelihood

Lower perplexity = better model

* Training 38 million words, test 1.5 million
words, Wall Street Journal

N-gram |Unigram Bigram Trigram
Order

Perplexity 962

26

Perplexity as branching factor

Let’s suppose a sentence consisting of random digits

What is the perplexity of this sentence according to a model
that assign P=1/10 to each digit?

1

PP(W) P(’llt‘llt‘j .. .11“\7)_:‘7

1+ N
, A
| %

— (E

1 -1
10
= 10

27

N-gram sparsity (Shakespeare corpus)

e N=884,647 tokens, V=29,066

e Shakespeare produced 300,000 bigram types
out of V%= 844 million possible bigrams.

e S0 99.96% of the possible bigrams were never seen
(have zero entries in the table)

e Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

28

Zeros

Training set: * Test set
... denied the allegations ... denied the offer
... denied the reports ... denied the loan

... denied the claims
... denied the request

P(“offer” | denied the) =0

how does this affect perplexity?

29

The intuition of smoothing (from Dan Klein)

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

Steal probability mass to generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

30

()]
x 5
S c O
= © 5
™ & O
(V)]
c-
o (b}
© || 2 X %
O || - @)
c 0
v (| © a | O © ==
o 11 2 |

Add-one estimation (again!)

Also called Laplace smoothing
Pretend we saw each word one more time than we did

Just add one to all the counts!
c(w,_,w,)

PMLE (Wi | Wi—l) =
MLE estimate: c(w,_,)

cw,_,,w.)+1
. | P, (wlw_)=—0H0>"
Add-1 estimate: Add-1 ! c(w_)+V

31

Berkeley Restaurant Corpus: Laplace

smoothed bigram counts

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 ‘ 609 | 2 7 7 6 2
to 3 5 687 | 3 1 7 212
eat 1 3 ’ 17 3 43 |
chinese 2 1 1 83 2
food 16 16 2 5 ‘
lunch 3 1 1 2
spend 2 2 1 1

32

Laplace-smoothed bigrams

P’ (Wn ‘Wn—l)

C(wp—1wy) +1

C (Wn—1) +V

1 want to eat chinese food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039 | 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056(0.00056| 0.00056| 0.00056(0.0011 0.00056| 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

33

Reconstituted counts

C*(Wn—lwrz) —

[C(Wn—lwn) T 1] X C(n—1)

Cwy—1)+V

1 want to eat chinese | food| Iunch| spend
1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

34

Compare with raw bigram counts

1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 | 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15| O 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

1 want to eat chinese | food| lunch| spend

1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

35

Add-1 estimation is a blunt instrument

e Soadd-1isn’t used for N-grams:

o We'll see better methods

e Butadd-1is used to smooth other NLP models
e For text classification
* [n domains where the number of zeros isn’t so huge.

36

37

