
Dependency Syntax

CS 485, Fall 2024 
Applications of Natural Language Processing

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

2

Typed dependency parse

• (Labeled) directed graph among all words
(tokens) in a sentence

• Every word has exactly one parent

• Single root node. Often a tree (and always a DAG)

3

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2024. All

rights reserved. Draft of August 20, 2024.

CHAPTER

19 Dependency Parsing

Tout mot qui fait partie d’une phrase... Entre lui et ses voisins, l’esprit aperçoit
des connexions, dont l’ensemble forme la charpente de la phrase.

[Between each word in a sentence and its neighbors, the mind perceives con-
nections. These connections together form the scaffolding of the sentence.]

Lucien Tesnière. 1959. Éléments de syntaxe structurale, A.1.§4

The focus of the last chapter was on context-free grammars and constituent-
based representations. Here we present another important family of grammar for-
malisms called dependency grammars. In dependency formalisms, phrasal con-dependency

grammars
stituents and phrase-structure rules do not play a direct role. Instead, the syntactic
structure of a sentence is described solely in terms of directed binary grammatical
relations between the words, as in the following dependency parse:

I prefer the morning flight through Denver

nsubj

obj

det

compound

nmod

case

root

(19.1)

Relations among the words are illustrated above the sentence with directed, labeled
arcs from heads to dependents. We call this a typed dependency structure becausetyped

dependency
the labels are drawn from a fixed inventory of grammatical relations. A root node
explicitly marks the root of the tree, the head of the entire structure.

Figure 19.1 on the next page shows the dependency analysis from (19.1) but vi-
sualized as a tree, alongside its corresponding phrase-structure analysis of the kind
given in the prior chapter. Note the absence of nodes corresponding to phrasal con-
stituents or lexical categories in the dependency parse; the internal structure of the
dependency parse consists solely of directed relations between words. These head-
dependent relationships directly encode important information that is often buried in
the more complex phrase-structure parses. For example, the arguments to the verb
prefer are directly linked to it in the dependency structure, while their connection
to the main verb is more distant in the phrase-structure tree. Similarly, morning
and Denver, modifiers of flight, are linked to it directly in the dependency structure.
This fact that the head-dependent relations are a good proxy for the semantic rela-
tionship between predicates and their arguments is an important reason why depen-
dency grammars are currently more common than constituency grammars in natural
language processing.

Another major advantage of dependency grammars is their ability to deal with
languages that have a relatively free word order. For example, word order in Czechfree word order
can be much more flexible than in English; a grammatical object might occur before
or after a location adverbial. A phrase-structure grammar would need a separate rule

19.1 • DEPENDENCY RELATIONS 3

Clausal Argument Relations Description
NSUBJ Nominal subject
OBJ Direct object
IOBJ Indirect object
CCOMP Clausal complement
Nominal Modifier Relations Description
NMOD Nominal modifier
AMOD Adjectival modifier
APPOS Appositional modifier
DET Determiner
CASE Prepositions, postpositions and other case markers
Other Notable Relations Description
CONJ Conjunct
CC Coordinating conjunction
Figure 19.2 Some of the Universal Dependency relations (de Marneffe et al., 2021).

to theory, there is enough commonality that cross-linguistic standards have been
developed. The Universal Dependencies (UD) project (de Marneffe et al., 2021),Universal

Dependencies
an open community effort to annotate dependencies and other aspects of grammar
across more than 100 languages, provides an inventory of 37 dependency relations.
Fig. 19.2 shows a subset of the UD relations and Fig. 19.3 provides some examples.

The motivation for all of the relations in the Universal Dependency scheme is
beyond the scope of this chapter, but the core set of frequently used relations can be
broken into two sets: clausal relations that describe syntactic roles with respect to a
predicate (often a verb), and modifier relations that categorize the ways that words
can modify their heads.

Consider, for example, the following sentence:

United canceled the morning flights to Houston

nsubj

obj

det

compound

nmod

case

root

(19.2)

Here the clausal relations NSUBJ and OBJ identify the subject and direct object of
the predicate cancel, while the NMOD, DET, and CASE relations denote modifiers of
the nouns flights and Houston.

19.1.1 Dependency Formalisms
A dependency structure can be represented as a directed graph G= (V,A), consisting
of a set of vertices V , and a set of ordered pairs of vertices A, which we’ll call arcs.

For the most part we will assume that the set of vertices, V , corresponds exactly
to the set of words in a given sentence. However, they might also correspond to
punctuation, or when dealing with morphologically complex languages the set of
vertices might consist of stems and affixes. The set of arcs, A, captures the head-
dependent and grammatical function relationships between the elements in V .

Different grammatical theories or formalisms may place further constraints on
these dependency structures. Among the more frequent restrictions are that the struc-
tures must be connected, have a designated root node, and be acyclic or planar. Of
most relevance to the parsing approaches discussed in this chapter is the common,

• Edge labels indicate grammatical
relationships

• Dependency structures work well with free
word order languages

• https://universaldependencies.org/en/dep/

https://universaldependencies.org/en/dep/

From constituency structure to
dependency graphs

4

2 CHAPTER 19 • DEPENDENCY PARSING

prefer

flight

Denver

through

morningthe

I

S

VP

NP

Nom

PP

NP

Pro

Denver

P

through

Nom

Noun

flight

Nom

Noun

morning

Det

the

Verb

prefer

NP

Pro

I

Figure 19.1 Dependency and constituent analyses for I prefer the morning flight through Denver.

for each possible place in the parse tree where such an adverbial phrase could occur.
A dependency-based approach can have just one link type representing this particu-
lar adverbial relation; dependency grammar approaches can thus abstract away a bit
more from word order information.

In the following sections, we’ll give an inventory of relations used in dependency
parsing, discuss two families of parsing algorithms (transition-based, and graph-
based), and discuss evaluation.

19.1 Dependency Relations

The traditional linguistic notion of grammatical relation provides the basis for thegrammatical
relation

binary relations that comprise these dependency structures. The arguments to these
relations consist of a head and a dependent. The head plays the role of the centralhead

dependent organizing word, and the dependent as a kind of modifier. The head-dependent rela-
tionship is made explicit by directly linking heads to the words that are immediately
dependent on them.

In addition to specifying the head-dependent pairs, dependency grammars allow
us to classify the kinds of grammatical relations, or grammatical function that thegrammatical

function
dependent plays with respect to its head. These include familiar notions such as
subject, direct object and indirect object. In English these notions strongly corre-
late with, but by no means determine, both position in a sentence and constituent
type and are therefore somewhat redundant with the kind of information found in
phrase-structure trees. However, in languages with more flexible word order, the
information encoded directly in these grammatical relations is critical since phrase-
based constituent syntax provides little help.

Linguists have developed taxonomies of relations that go well beyond the famil-
iar notions of subject and object. While there is considerable variation from theory

• Dep. subgraph corresponds to a some constituent

• ... and the dep. subgraph's root is the "head" of that constitutent

5

6

• Dependencies tend to be less specific than
constituent structure

224 CHAPTER 12. DEPENDENCY PARSING

VP

PP

with a fork

PP

on the table

NP

dinner

V

ate

(a) Flat

VP

PP

with a fork

VP

PP

on the table

VP

NP

dinner

V

ate

(b) Two-level (PTB-style)

VP

PP

with a fork

PP

on the table

VP

NP

dinner

V

ate

(c) Chomsky adjunction

ate dinner on the table with a fork

(d) Dependency representation

Figure 12.3: The three different CFG analyses of this verb phrase all correspond to a single
dependency structure.

shown in Figure 12.3d, these three cases all look the same in a dependency parse. So
if you didn’t think there was any meaningful difference between these three constituent
representations, you may view this as an advantage of the dependency representation.

Dependency grammar still leaves open some tricky representational decisions. For
example, coordination is a challenge: in the sentence, Abigail and Max like kimchi (Fig-
ure 12.4), which word is the immediate dependent of the main verb likes? Choosing ei-
ther Abigail or Max seems arbitrary; for fairness we might choose and, but this seems in
some ways to be the least important word in the noun phrase. One typical solution is
to simply choose the left-most item in the coordinated structure — in this case, Abigail.
Another alternative, as shown in Figure 12.4c, is a collapsed dependency grammar in
which conjunctions are not included as nodes in the graph, but are instead used to label
the edges (De Marneffe et al., 2006). Popel et al. (2013) survey alternatives for handling
this phenomenon across several dependency treebanks.

The same logic that makes us reluctant to accept and as the head of a coordinated noun
phrase may also make us reluctant to accept a preposition as the head of a prepositional
phrase. In the sentence cats scratch people with claws, surely the word claws is more cen-
tral than the word with — and it is precisely the bilexical relations between scratch, claws,
and people that help guide us to the correct syntactic interpretation. Yet there are also
arguments for preferring the preposition as the head — as we saw in section 11.5, the
preposition itself is what helps us to choose verb attachment in meet the President on Mon-
day and noun attachment in meet the President of Mexico. Collapsed dependency grammar

(c) Jacob Eisenstein 2014-2017. Work in progress.

[Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Headedness for phrase relations
• Is a given word X the subject of verb Y?

• Is a given phrase X the subject of verb Y?

7

Universal Dependencies
• Dependency treebanks are available for many

different languages

• https://universaldependencies.org/

• Many open-source dependency parsers (and
tagging/POS/morphology) trained on them are
also widely available; e.g. Stanza, SpaCy, etc.

8

19.1 • DEPENDENCY RELATIONS 5

Our concern with projectivity arises from two related issues. First, the most
widely used English dependency treebanks were automatically derived from phrase-
structure treebanks through the use of head-finding rules. The trees generated in such
a fashion will always be projective, and hence will be incorrect when non-projective
examples like this one are encountered.

Second, there are computational limitations to the most widely used families of
parsing algorithms. The transition-based approaches discussed in Section 19.2 can
only produce projective trees, hence any sentences with non-projective structures
will necessarily contain some errors. This limitation is one of the motivations for
the more flexible graph-based parsing approach described in Section 19.3.

19.1.3 Dependency Treebanks

Treebanks play a critical role in the development and evaluation of dependency
parsers. They are used for training parsers, they act as the gold labels for evaluating
parsers, and they also provide useful information for corpus linguistics studies.

Dependency treebanks are created by having human annotators directly generate
dependency structures for a given corpus, or by hand-correcting the output of an
automatic parser. A few early treebanks were also based on using a deterministic
process to translate existing constituent-based treebanks into dependency trees.

The largest open community project for building dependency trees is the Univer-
sal Dependencies project at https://universaldependencies.org/ introduced
above, which currently has almost 200 dependency treebanks in more than 100 lan-
guages (de Marneffe et al., 2021). Here are a few UD examples showing dependency
trees for sentences in Spanish, Basque, and Mandarin Chinese:

VERB ADP DET NOUN ADP DET NUM PUNCT
Subiremos a el tren a las cinco .

we-will-board on the train at the five .

obl

det

case

det

obl:tmod

case

punct

[Spanish] Subiremos al tren a las cinco. “We will be boarding the train at five.”(19.4)

NOUN NOUN VERB AUX PUNCT
Ekaitzak itsasontzia hondoratu du .

storm (Erg.) ship (Abs.) sunk has .

nsubj

obj aux

punct

[Basque] Ekaitzak itsasontzia hondoratu du. “The storm has sunk the ship.”(19.5)

6 CHAPTER 19 • DEPENDENCY PARSING

ADV PRON NOUN ADV VERB VERB NOUN
F ⌘ () M 6 0 ·
but I yesterday only-then receive arrive letter .

adv

nsubj

obj:tmod

advmod compound:vv

obj

[Chinese]F⌘()M60· “But I didn’t receive the letter until yesterday”(19.6)

19.2 Transition-Based Dependency Parsing

Our first approach to dependency parsing is called transition-based parsing. Thistransition-based
architecture draws on shift-reduce parsing, a paradigm originally developed for
analyzing programming languages (Aho and Ullman, 1972). In transition-based
parsing we’ll have a stack on which we build the parse, a buffer of tokens to be
parsed, and a parser which takes actions on the parse via a predictor called an oracle,
as illustrated in Fig. 19.4.

wnw1 w2

s2
...

s1

sn

Parser

Input buffer

Stack Oracle

LEFTARC

RIGHTARC

SHIFT

Action
Dependency

Relations

w3 w2

Figure 19.4 Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action by consulting an oracle that examines the current configuration.

The parser walks through the sentence left-to-right, successively shifting items
from the buffer onto the stack. At each time point we examine the top two elements
on the stack, and the oracle makes a decision about what transition to apply to build
the parse. The possible transitions correspond to the intuitive actions one might take
in creating a dependency tree by examining the words in a single pass over the input
from left to right (Covington, 2001):

• Assign the current word as the head of some previously seen word,
• Assign some previously seen word as the head of the current word,
• Postpone dealing with the current word, storing it for later processing.
We’ll formalize this intuition with the following three transition operators that

will operate on the top two elements of the stack:
• LEFTARC: Assert a head-dependent relation between the word at the top of

the stack and the second word; remove the second word from the stack.
• RIGHTARC: Assert a head-dependent relation between the second word on

the stack and the word at the top; remove the top word from the stack;

19.1 • DEPENDENCY RELATIONS 5

Our concern with projectivity arises from two related issues. First, the most
widely used English dependency treebanks were automatically derived from phrase-
structure treebanks through the use of head-finding rules. The trees generated in such
a fashion will always be projective, and hence will be incorrect when non-projective
examples like this one are encountered.

Second, there are computational limitations to the most widely used families of
parsing algorithms. The transition-based approaches discussed in Section 19.2 can
only produce projective trees, hence any sentences with non-projective structures
will necessarily contain some errors. This limitation is one of the motivations for
the more flexible graph-based parsing approach described in Section 19.3.

19.1.3 Dependency Treebanks

Treebanks play a critical role in the development and evaluation of dependency
parsers. They are used for training parsers, they act as the gold labels for evaluating
parsers, and they also provide useful information for corpus linguistics studies.

Dependency treebanks are created by having human annotators directly generate
dependency structures for a given corpus, or by hand-correcting the output of an
automatic parser. A few early treebanks were also based on using a deterministic
process to translate existing constituent-based treebanks into dependency trees.

The largest open community project for building dependency trees is the Univer-
sal Dependencies project at https://universaldependencies.org/ introduced
above, which currently has almost 200 dependency treebanks in more than 100 lan-
guages (de Marneffe et al., 2021). Here are a few UD examples showing dependency
trees for sentences in Spanish, Basque, and Mandarin Chinese:

VERB ADP DET NOUN ADP DET NUM PUNCT
Subiremos a el tren a las cinco .

we-will-board on the train at the five .

obl

det

case

det

obl:tmod

case

punct

[Spanish] Subiremos al tren a las cinco. “We will be boarding the train at five.”(19.4)

NOUN NOUN VERB AUX PUNCT
Ekaitzak itsasontzia hondoratu du .

storm (Erg.) ship (Abs.) sunk has .

nsubj

obj aux

punct

[Basque] Ekaitzak itsasontzia hondoratu du. “The storm has sunk the ship.”(19.5)

https://universaldependencies.org/

Shift-reduce, transition parsing

• How to predict a parse structure for an input
sentence? Deal with massive ambiguity.

• Incremental parsing: proceed left-to-right, building
up the parse structure incrementally.

• Interesting analogy for human sentence processing

• (Many similar or sometimes quite different
algorithms exist for both constituency and
dependency parsing!)

9

Transition-based parsing

• State machine with exactly 3 allowed actions

• At runtime: machine learned classifier to decide action

10

6 CHAPTER 19 • DEPENDENCY PARSING

ADV PRON NOUN ADV VERB VERB NOUN
F ⌘ () M 6 0 ·
but I yesterday only-then receive arrive letter .

adv

nsubj

obj:tmod

advmod compound:vv

obj

[Chinese]F⌘()M60· “But I didn’t receive the letter until yesterday”(19.6)

19.2 Transition-Based Dependency Parsing

Our first approach to dependency parsing is called transition-based parsing. Thistransition-based
architecture draws on shift-reduce parsing, a paradigm originally developed for
analyzing programming languages (Aho and Ullman, 1972). In transition-based
parsing we’ll have a stack on which we build the parse, a buffer of tokens to be
parsed, and a parser which takes actions on the parse via a predictor called an oracle,
as illustrated in Fig. 19.4.

wnw1 w2

s2
...

s1

sn

Parser

Input buffer

Stack Oracle

LEFTARC

RIGHTARC

SHIFT

Action
Dependency

Relations

w3 w2

Figure 19.4 Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action by consulting an oracle that examines the current configuration.

The parser walks through the sentence left-to-right, successively shifting items
from the buffer onto the stack. At each time point we examine the top two elements
on the stack, and the oracle makes a decision about what transition to apply to build
the parse. The possible transitions correspond to the intuitive actions one might take
in creating a dependency tree by examining the words in a single pass over the input
from left to right (Covington, 2001):

• Assign the current word as the head of some previously seen word,
• Assign some previously seen word as the head of the current word,
• Postpone dealing with the current word, storing it for later processing.
We’ll formalize this intuition with the following three transition operators that

will operate on the top two elements of the stack:
• LEFTARC: Assert a head-dependent relation between the word at the top of

the stack and the second word; remove the second word from the stack.
• RIGHTARC: Assert a head-dependent relation between the second word on

the stack and the word at the top; remove the top word from the stack;

19.2 • TRANSITION-BASED DEPENDENCY PARSING 7

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

We’ll sometimes call operations like LEFTARC and RIGHTARC reduce operations,
based on a metaphor from shift-reduce parsing, in which reducing means combin-
ing elements on the stack. There are some preconditions for using operators. The
LEFTARC operator cannot be applied when ROOT is the second element of the stack
(since by definition the ROOT node cannot have any incoming arcs). And both the
LEFTARC and RIGHTARC operators require two elements to be on the stack to be
applied.

This particular set of operators implements what is known as the arc standardarc standard
approach to transition-based parsing (Covington 2001, Nivre 2003). In arc standard
parsing the transition operators only assert relations between elements at the top of
the stack, and once an element has been assigned its head it is removed from the
stack and is not available for further processing. As we’ll see, there are alterna-
tive transition systems which demonstrate different parsing behaviors, but the arc
standard approach is quite effective and is simple to implement.

The specification of a transition-based parser is quite simple, based on repre-
senting the current state of the parse as a configuration: the stack, an input bufferconfiguration

of words or tokens, and a set of relations representing a dependency tree. Parsing
means making a sequence of transitions through the space of possible configura-
tions. We start with an initial configuration in which the stack contains the ROOT
node, the buffer has the tokens in the sentence, and an empty set of relations repre-
sents the parse. In the final goal state, the stack and the word list should be empty,
and the set of relations will represent the final parse. Fig. 19.5 gives the algorithm.

function DEPENDENCYPARSE(words) returns dependency tree

state {[root], [words], [] } ; initial configuration
while state not final

t ORACLE(state) ; choose a transition operator to apply
state APPLY(t, state) ; apply it, creating a new state

return state

Figure 19.5 A generic transition-based dependency parser

At each step, the parser consults an oracle (we’ll come back to this shortly) that
provides the correct transition operator to use given the current configuration. It then
applies that operator to the current configuration, producing a new configuration.
The process ends when all the words in the sentence have been consumed and the
ROOT node is the only element remaining on the stack.

The efficiency of transition-based parsers should be apparent from the algorithm.
The complexity is linear in the length of the sentence since it is based on a single
left to right pass through the words in the sentence. (Each word must first be shifted
onto the stack and then later reduced.)

Note that unlike the dynamic programming and search-based approaches dis-
cussed in Chapter 18, this approach is a straightforward greedy algorithm—the or-
acle provides a single choice at each step and the parser proceeds with that choice,
no other options are explored, no backtracking is employed, and a single parse is
returned in the end.

Figure 19.6 illustrates the operation of the parser with the sequence of transitions

• Possible actions

• SHIFT: remove word from front of buffer, push word on top of stack

• LEFTARC: create edge between top and second-to-top of stack

• RIGHTARC: create edge between top and second-to-top of stack

11

19.2 • TRANSITION-BASED DEPENDENCY PARSING 9

Step Stack Word List Action Relation Added
0 [root] [book, me, the, morning, flight] SHIFT
1 [root, book] [me, the, morning, flight] SHIFT
2 [root, book, me] [the, morning, flight] RIGHTARC (book! me)
3 [root, book] [the, morning, flight] SHIFT
4 [root, book, the] [morning, flight] SHIFT
5 [root, book, the, morning] [flight] SHIFT
6 [root, book, the, morning, flight] [] LEFTARC (morning flight)
7 [root, book, the, flight] [] LEFTARC (the flight)
8 [root, book, flight] [] RIGHTARC (book! flight)
9 [root, book] [] RIGHTARC (root! book)

10 [root] [] Done
Figure 19.6 Trace of a transition-based parse.

Finally, for simplicity, we have illustrated this example without the labels on
the dependency relations. To produce labeled trees, we can parameterize the LEFT-
ARC and RIGHTARC operators with dependency labels, as in LEFTARC(NSUBJ) or
RIGHTARC(OBJ). This is equivalent to expanding the set of transition operators from
our original set of three to a set that includes LEFTARC and RIGHTARC operators for
each relation in the set of dependency relations being used, plus an additional one
for the SHIFT operator. This, of course, makes the job of the oracle more difficult
since it now has a much larger set of operators from which to choose.

19.2.1 Creating an Oracle
The oracle for greedily selecting the appropriate transition is trained by supervised
machine learning. As with all supervised machine learning methods, we will need
training data: configurations annotated with the correct transition to take. We can
draw these from dependency trees. And we need to extract features of the con-
figuration. We’ll introduce neural classifiers that represent the configuration via
embeddings, as well as classic systems that use hand-designed features.

Generating Training Data

The oracle from the algorithm in Fig. 19.5 takes as input a configuration and returns a
transition operator. Therefore, to train a classifier, we will need configurations paired
with transition operators (i.e., LEFTARC, RIGHTARC, or SHIFT). Unfortunately,
treebanks pair entire sentences with their corresponding trees, not configurations
with transitions.

To generate the required training data, we employ the oracle-based parsing algo-
rithm in a clever way. We supply our oracle with the training sentences to be parsed
along with their corresponding reference parses from the treebank. To produce train-
ing instances, we then simulate the operation of the parser by running the algorithm
and relying on a new training oracle to give us correct transition operators for eachtraining oracle

successive configuration.
To see how this works, let’s first review the operation of our parser. It begins with

a default initial configuration where the stack contains the ROOT, the input list is just
the list of words, and the set of relations is empty. The LEFTARC and RIGHTARC
operators each add relations between the words at the top of the stack to the set of
relations being accumulated for a given sentence. Since we have a gold-standard
reference parse for each training sentence, we know which dependency relations are
valid for a given sentence. Therefore, we can use the reference parse to guide the

8 CHAPTER 19 • DEPENDENCY PARSING

leading to a parse for the following example.

Book me the morning flight

iobj

obj

det

compound

root

(19.7)

Let’s consider the state of the configuration at Step 2, after the word me has been
pushed onto the stack.

Stack Word List Relations
[root, book, me] [the, morning, flight]

The correct operator to apply here is RIGHTARC which assigns book as the head of
me and pops me from the stack resulting in the following configuration.

Stack Word List Relations
[root, book] [the, morning, flight] (book! me)

After several subsequent applications of the SHIFT operator, the configuration in
Step 6 looks like the following:

Stack Word List Relations
[root, book, the, morning, flight] [] (book! me)

Here, all the remaining words have been passed onto the stack and all that is left
to do is to apply the appropriate reduce operators. In the current configuration, we
employ the LEFTARC operator resulting in the following state.

Stack Word List Relations
[root, book, the, flight] [] (book! me)

(morning flight)

At this point, the parse for this sentence consists of the following structure.

Book me the morning flight

iobj compound
(19.8)

There are several important things to note when examining sequences such as
the one in Figure 19.6. First, the sequence given is not the only one that might lead
to a reasonable parse. In general, there may be more than one path that leads to the
same result, and due to ambiguity, there may be other transition sequences that lead
to different equally valid parses.

Second, we are assuming that the oracle always provides the correct operator
at each point in the parse—an assumption that is unlikely to be true in practice.
As a result, given the greedy nature of this algorithm, incorrect choices will lead to
incorrect parses since the parser has no opportunity to go back and pursue alternative
choices. Section 19.2.4 will introduce several techniques that allow transition-based
approaches to explore the search space more fully.

Transition model
• Feature templates: can use all information from current parser state

(stack, buffer, edges so far)

• Current word on top of each? At second position?

• Current POS tag on top of each? At second position?

• Are they left or right of each other in the sentence?

• etc.

12

19.2 • TRANSITION-BASED DEPENDENCY PARSING 11

possible action. The same conditions hold in the next two steps. In step 3, LEFTARC
is selected to link the to its head.

Now consider the situation in Step 4.

Stack Word buffer Relations
[root, book, flight] [through, Houston] (the flight)

Here, we might be tempted to add a dependency relation between book and flight,
which is present in the reference parse. But doing so now would prevent the later
attachment of Houston since flight would have been removed from the stack. For-
tunately, the precondition on choosing RIGHTARC prevents this choice and we’re
again left with SHIFT as the only viable option. The remaining choices complete the
set of operators needed for this example.

To recap, we derive appropriate training instances consisting of configuration-
transition pairs from a treebank by simulating the operation of a parser in the con-
text of a reference dependency tree. We can deterministically record correct parser
actions at each step as we progress through each training example, thereby creating
the training set we require.

19.2.2 A feature-based classifier
We’ll now introduce two classifiers for choosing transitions, here a classic feature-
based algorithm and in the next section a neural classifier using embedding features.

Featured-based classifiers generally use the same features we’ve seen with part-
of-speech tagging and partial parsing: Word forms, lemmas, parts of speech, the
head, and the dependency relation to the head. Other features may be relevant for
some languages, for example morphosyntactic features like case marking on subjects
or objects. The features are extracted from the training configurations, which consist
of the stack, the buffer and the current set of relations. Most useful are features
referencing the top levels of the stack, the words near the front of the buffer, and the
dependency relations already associated with any of those elements.

We’ll use a feature template as we did for sentiment analysis and part-of-speechfeature
template

tagging. Feature templates allow us to automatically generate large numbers of spe-
cific features from a training set. For example, consider the following feature tem-
plates that are based on single positions in a configuration.

hs1.w,opi,hs2.w,opihs1.t,opi,hs2.t,opi
hb1.w,opi,hb1.t,opihs1.wt,opi (19.10)

Here features are denoted as location.property, where s = stack, b = the word
buffer, w = word forms, t = part-of-speech, and op = operator. Thus the feature for
the word form at the top of the stack would be s1.w, the part of speech tag at the
front of the buffer b1.t, and the concatenated feature s1.wt represents the word form
concatenated with the part of speech of the word at the top of the stack. Consider
applying these templates to the following intermediate configuration derived from a
training oracle for (19.2).

Stack Word buffer Relations
[root, canceled, flights] [to Houston] (canceled! United)

(flights! morning)
(flights! the)

12 CHAPTER 19 • DEPENDENCY PARSING

The correct transition here is SHIFT (you should convince yourself of this before
proceeding). The application of our set of feature templates to this configuration
would result in the following set of instantiated features.

hs1.w = flights,op = shifti (19.11)

hs2.w = canceled,op = shifti
hs1.t = NNS,op = shifti
hs2.t = VBD,op = shifti
hb1.w = to,op = shifti
hb1.t = TO,op = shifti

hs1.wt = flightsNNS,op = shifti

Given that the left and right arc transitions operate on the top two elements of the
stack, features that combine properties from these positions are even more useful.
For example, a feature like s1.t � s2.t concatenates the part of speech tag of the word
at the top of the stack with the tag of the word beneath it.

hs1.t � s2.t = NNSVBD,op = shifti (19.12)

Given the training data and features, any classifier, like multinomial logistic re-
gression or support vector machines, can be used.

19.2.3 A neural classifier
The oracle can also be implemented by a neural classifier. A standard architecture
is simply to pass the sentence through an encoder, then take the presentation of the
top 2 words on the stack and the first word of the buffer, concatenate them, and
present to a feedforward network that predicts the transition to take (Kiperwasser
and Goldberg, 2016; Kulmizev et al., 2019). Fig. 19.8 sketches this model. Learning
can be done with cross-entropy loss.

w …

s2

...

s1

Input buffer

Stack

LEFTARC
RIGHTARC
SHIFT

Action Dependency
Relations

w3 w2

ENCODER

w1 w2 w3 w4 w5 w6

Parser Oracle

Softm
ax

FFN

w

s1

s2

e(w)

e(s1)

e(s2)

Figure 19.8 Neural classifier for the oracle for the transition-based parser. The parser takes
the top 2 words on the stack and the first word of the buffer, represents them by their encodings
(from running the whole sentence through the encoder), concatenates the embeddings and
passes through a softmax to choose a parser action (transition).

• Training time: use rule system to extract oracle transition from
gold-standard annotations

Dependency applications

• Dependency paths (e.g. (fly, -nsubj->, bird)) can
be used as less sparse alternative to n-grams

• Sometimes helps, sometimes doesn’t

• Dependency relations can be selected for
semantic relationships

• At a higher level, word-to-word dependencies
are key to current "Transformer" neural net
models, but explicit syn. deps are used less
often

13

Dependency pattern statistics

14

42

eation of beliefs to communities represented by
social variables. We call this system TweetIE.

4.1 Design Principles
In order to preserve the benefits of the domain-
specific dependency parsing system while main-
taining a simple overall system, we seek to:

• Infer relations using dependency parses,
NER tags, and POS tags, not through lexi-
cons that might only cover standard English.

• Focus on relations regarding a named entity
and its attributes.

• Minimize the number of arguments for rela-
tions to allow for accumulation and compari-
son across social variables.

4.2 Target Entities and Pronoun Coreference
We focus our extraction based on the attributes of
a single named-entity in a given tweet, through
either specifying a name, or using an @ mention
of that user’s account. In the case of names of
persons or organizations, we take into account the
specified token, and expand it using the flat rela-
tion and the span of any BIO NER tags. If the
root of this span is a conj dependency or if any
relevant predicates have conj dependencies, we dis-
tribute dependency relations over them, as done in
the CCprocessed/Enhanced++ variants of Stanford
(De Marneffe and Manning, 2008) and Universal
(Schuster and Manning, 2016) Dependencies.

In order to capture common forms of anaphora
such as possessive pronoun usage, we implement
a simple precision-oriented coreference system for
binary gendered target entities. The user specifies
the target’s gender, and the system seeks any per-
sonal pronouns with the target as the antecedent. It
first determines whether the target’s mention(s) are
in second person (denoted by the vocative relation)
or third person (otherwise). It attributes pronouns
of the determined person and specified gender to
the target if there are no other entities (denoted by
“PER” NER tags) mentioned in the text before it
that are potentially applicable (as in they agree with
regards to grammatical person).

To evaluate this system, we annotated a random
sample of 100 tweets for whether their POS-tagged
pronouns refer to the target entity of our later case
study, Dr. Anthony Fauci (see Section 5). Our
system achieved 33/39 (84.6%) precision and 33/52
(63.5%) recall.

4.3 Relations
We limit our focus to the following semantic rela-
tions:

4.3.1 IS_A
The IS_A relation covers any nominal or adjectival
properties stated to directly pertain to the target
entity, represented using the following patterns:5

1. target nsubj ! propertynom

2. propertyadj
nsubj���! target

3. target appos ! propertynom

4. target compound������! propertynom

5. target amod���! propertyadj

6. target nsubj ! propertynom
amod���! propertyadj

7. target appos ! propertynom
amod���! propertyadj

Patterns 1 and 2 detect subject-complement linking
through copular clauses, even when explicit copu-
las are omitted. Pattern 3 detects appositions, and
Pattern 4 detects titles that do not make up fully
formed appositions (ex: “President Obama”).

Pattern 5 detects adjective modifiers. Patterns
6 and 7 detect adjective modifiers of previously
captured nominal properties, hoping to capture in-
tersective adjectives (ex: “Trump is a famous per-
son”).

4.3.2 HAS_A
The HAS_A relation pertains to any object pos-
sessed the target entity, implemented through pos-
sessive modification.

1. objectnom
nmod:poss������! target

4.3.3 AS_AGENT, AS_PATIENT
The AS_AGENT and AS_PATIENT relations
pertain to actions performed by the target entity
and performed upon the target entity respectively.

1. active verb nsubj���! targetagent

2. active verb obj��! targetpatient

3. passive verb nsubj:pass������! targetpatient

4. passive verb obl��! targetagent

5. active verb obl��! targetpatient
case��! prep.

5H!D represents a relation from a head H to its depen-
dency D, while X !Y indicates a relation in either direction.

[Eggleston and O'Connor, 2022]

Hand-built dependency patterns to get specific semantic
relationships between words

Proceedings of the 2022 COLING Workshop: The 8th Workshop on Noisy User-generated Text (W-NUT 2022), pages 38–50

38

Cross-Dialect Social Media Dependency Parsing for Social Scientific Entity
Attribute Analysis

Chloe Eggleston
University of Massachusetts Amherst

ceggleston@umass.edu

Brendan O’Connor
University of Massachusetts Amherst
brenocon@cs.umass.edu

Abstract

In this paper, we utilize recent advancements
in social media natural language processing
to obtain state-of-the-art syntactic dependency
parsing results for social media English. We
observe performance gains of 3.4 UAS and
4.0 LAS against the previous state-of-the-art
as well as less disparity between African-
American and Mainstream American English
dialects. We demonstrate the computational so-
cial scientific utility of this parser for the task of
socially embedded entity attribute analysis: for
a specified entity, derive its semantic relation-
ships from parses’ rich syntax, and accumulate
and compare them across social variables. We
conduct a case study on politicized views of
U.S. official Anthony Fauci during the COVID-
19 pandemic.1

1 Introduction

Corpora of social media text contain wide ranges
of beliefs that researchers may seek to analyze. But
numerous studies have found significant challenges
in applying natural language processing (NLP)
techniques to social media, ranging from incon-
sistent spelling practices to continuously evolving
terminology (Baldwin, 2012; Eisenstein, 2013).

Under the now-ubiquitous modeling paradigm of
pretrained transformers (Peters et al., 2018; Devlin
et al., 2019; Bender et al., 2021; Bommasani et al.,
2021), it is crucial to include social media content
in a language model pretraining corpus. BERTweet
(Nguyen et al., 2020), a language model trained
entirely on English Twitter, has shown state-of-the-
art results in classification (Barbieri et al., 2020),
part-of-speech (POS) tagging (Nguyen et al., 2020),
and named entity recognition (NER) (Jiang et al.,
2022) on social media English.

In addition, treebanks have been annotated to
cover this specific variety of English. Tweebank v2

1Code for this paper is available at: https://github.
com/slanglab/TweetIE_WNUT2022

Figure 1: Examples of dependencies and TweetIE’s
entity attribute extraction system (§4).

(Liu et al., 2018) consists of 3,550 English tweets
annotated according to Universal Dependencies
(Nivre et al., 2020), and Jiang et al. (2022) add NER
tags following the four-class CoNLL 2003 guide-
lines (Tjong Kim Sang and De Meulder, 2003).

Other work has considered the impact of de-
mographic and dialectical factors on social me-
dia NLP. Blodgett et al. (2016, 2018) investigate
linguistic variation of African-American English
(AAE) on Twitter from aggregate user demograph-
ics, developing a small 500 tweet Universal De-
pendencies corpus half of which consists of tweets
heavily using AAE. On this AAE subset, depen-
dency parsers encounter worse performance than
on Mainstream American English (MAE), and a
similar AAE-MAE dialect disparity is widespread
in other areas of NLP (e.g. Koenecke et al., 2020;
Ziems et al., 2022).

Social media NLP advances could enable novel
techniques in computational social science. Re-
trieval and representation of the beliefs and opin-
ions of various groups and ideologies is of clear
importance to many social sciences, with applica-
tions ranging from misinformation studies (Ayoub
et al., 2021) to political science and economics
(Ash et al., 2021).

With these goals in mind, we train a state-of-

https://aclanthology.org/2022.wnut-1.4/

• From geo-located tweets, Mar-Dec 2020
15

44

Relation Trump-Leaning (t < �2) Biden-Leaning (t > 2)
IS_A(fauci, propertynom) murderer**, joke**, hack*, fraud*, rat*, flip*, id-

iot, flop, state, prison, fake, jail
nih**, hero, md, director,
president

IS_A(fauci, propertyadj) fake*, little*, deep, liberal, wrong, corrupt beloved, optimistic, best
AS_AGENT(fauci, verb) sweat**, force**, need*, help*, read*, lie*, know*,

let*, not_fund*, not_understand*, flip, predict,
write, make, stick, hold, prove, want, not_say,
admit, not_get, demand, issue, laugh, state, put,
spread, pull

speak**, join*, warn*, throw,
not_recommend, offer, pro-
vide, respond, consider, de-
bunk, fail, reveal

AS_PATIENT(fauci, verb) not_trust***, screw, prosecute, grill, keep to, ar-
rest, expose, lock, do to, remove, accord to, look
like, mean, blast, read

know*, feature, discredit,
threaten, worship, join, insult

HAS_A(fauci, object) friend*, nih*, family, mind, hand, ex-employee,
involvement, fraud, mask

guidance, time

AS_CONJUNCT(fauci, conj.) gates***, obama**, bill gates*, biden*, brix, cdc,
rest, covid, nih, company, government

director, experts

Table 5: TweetIE extractions with at least 20 unique users with a county-level political valence t-statistic outside of
[-2, 2]. Results are reported in decreasing absolute value t-statistic. * |t| > 3, ** |t| > 4, *** |t| > 5.

dialogue rather than statements by reporters and
officials.

5.2 Results and Qualitative Evaluation

We obtain 75,325 tweets, which have an electoral
margin average of 22.8 and standard deviation of
33.9. TweetIE yields 13,532 unique triples of re-
lation(Fauci, token), which we call unique extrac-
tions. The counts of these sum to 99,633 total ex-
tractions overall. In order to improve aggregation,
we lowercase and normalize the token terms with
NLTK’s WordNetLemmatizer (Loper and Bird,
2002), and remove stopwords from NLTK’s En-
glish stopword list.

For each tuple that is expressed by at least 20
unique users, we use a one-sample student’s t statis-
tic to determine if the mean author-geography polit-
ical sentiment of the tuple is significantly different
than the corpus population’s. We require |t| > 2 as
a rough filter for traditional statistical significance.8

This method for term ranking is appropriate for the
continuous variable of political sentiment. Since
words’ frequencies greatly vary, rare terms tend
to be sentiment average outliers; the t statistic’s
normalization by standard error helps control for
an expression’s sample size.9

8Under the central limit theorem, |t| > 1.96 corresponds
to p-value < 0.05. Given multiple hypothesis testing issues
we do not propose a formal significance test interpretation,
though false discovery rate or other methods could be applied
(Bamman et al., 2012).

9Social science NLP has often ranked terms by analogous
confidence measures of term frequency versus a discrete social
variable, such as �2 (Gentzkow and Shapiro, 2010) or log-
odds posterior confidence (Monroe et al., 2008).

This results in 110 expressions have test statis-
tics greater than 2 or less than -2, shown in Table
5. These reflect common political narratives con-
cerning Fauci and his COVID-19 response. Polit-
ical scientific work has found liberal respondents
to be more trusting in COVID-19 experts such as
Fauci than conservatives (Kerr et al., 2021), as well
as more hesitant towards COVID-19 vaccination
(Khubchandani et al., 2021), whose development
and production Fauci was involved with.

The notable considerations of Fauci as a joke or
a fraud, or that he lies or is not trusted, reflect lack
of trust in Fauci by the Trump-leaning. Likewise,
suggesting that Fauci is a hero or beloved, as well
as emphasizing what he says or his warnings show
trust in Fauci from the Biden-leaning.

There are elements of COVID-19 related right-
wing conspiracism in the Trump-leaning extrac-
tions as well. Common antecedents of COVID-19
conspiracism include the notions of a fraudlent pan-
demic, vaccination as a weapon, suspicions of the
government, pharmaceutical industry, Democrats,
and Bill Gates (van Mulukom et al., 2022). In our
analysis this theme surfaces in Gates’ appearance
as a frequent conjunct; furthermore, many Trump-
leaning extractions indicate Fauci as a murderer for
his involvement in vaccination, or as someone who
should be prosecuted, arrested, or put in prison.
A shortcoming of our token-based approach can
be seen with the bigram “deep state”, a key nar-
rative element, being split into two separate IS_A
statements, which would be better viewed together.

[Eggleston and O'Connor, 2022]

https://aclanthology.org/2022.wnut-1.4/

