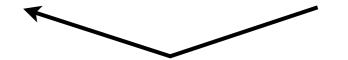
Context-Free Grammars


CS 485, Fall 2024 Applications of Natural Language Processing

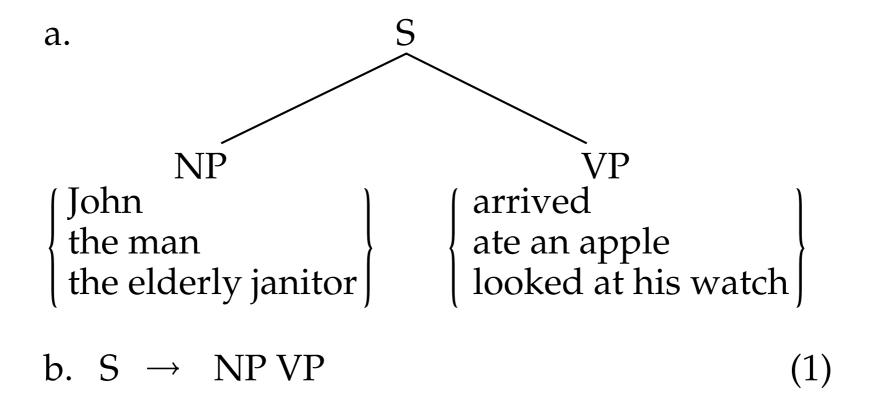
Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Syntax: how do words structurally combine to form sentences and meaning?

- Constituents
 - [the big dogs] chase cats
 - [colorless green clouds] chase cats
- Dependencies
 - The **dog** ← **chased** the cat.
 - My dog, who's getting old, chased the cat.

Syntax for NLP


- If we could predict syntactic structure from raw text (parsing), that could help with...
 - Language understanding: meaning formed from structure
 - Grammar checking
 - Preprocessing: Extract phrases and semantic relationships between words for features, viewing, etc.
- Provides a connection between the theory of generative linguistics and computational modeling of language
- Practically
 - accurate full sentence parsing is challenging....
 - contemporary neural net LMs do implicit syntactic processing internally
 - ... same challenges for explicit syntax systems exist for all NLP tasks/models/systems

Is language context-free?

- Regular language: repetition of repeated structures
 - e.g. "base noun phrases": (Noun | Adj)* Noun
 - subset of the JK pattern
- Context-free: hierarchical recursion
- Center-embedding: classic theoretical argument for CFG vs. regular languages
 - (10.1) The cat is fat.
 - (10.2) The cat that the dog chased is fat.
 - (10.3) *The cat that the dog is fat.
 - (10.4) The cat that the dog that the monkey kissed chased is fat.
 - (10.5) *The cat that the dog that the monkey chased is fat.
- Competence vs. Performance

Hierarchical view of syntax

 "a Sentence made of Noun Phrase followed by a Verb Phrase"

Context-free grammars (CFG)

A CFG is a 4-tuple:

```
N a set of non-terminals \Sigma a set of terminals (distinct from N) R a set of productions, each of the form A \to \beta, where A \in N and \beta \in (\Sigma \cup N)^* a designated start symbol
```

Example: see handout!

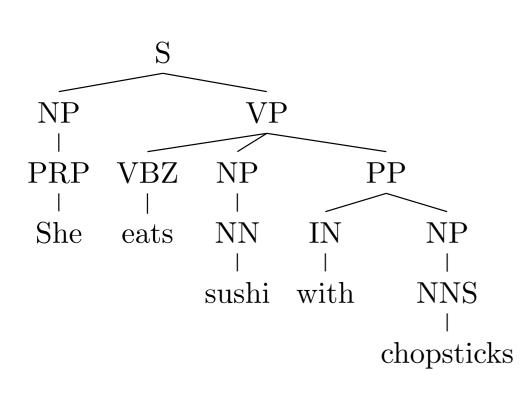
- Derivation: a sequence of rewrite steps from S to a string (sequence of terminals, i.e. words)
- Yield: the final string (sentence)
- The parse tree or constituency tree corresponds to the rewrite steps that were used to derive the string

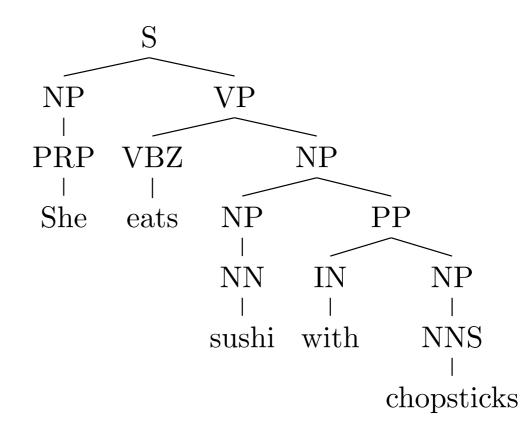
- A CFG is a "boolean language model"
 - A grammar (4-tuple) defines to a set of strings it could generate

Context-free grammars (CFG)

R: production rules typically split into two groups

Core grammar: I NT expands to >= I NT


```
S \rightarrow NP VP
                                I + want a morning flight
     NP \rightarrow Pronoun
                              Los Angeles
              Proper-Noun
              Det Nominal
                                a + flight
                                morning + flight
Nominal \rightarrow Nominal Noun
                                flights
              Noun
                                do
     VP \rightarrow Verb
              Verb NP
                                want + a flight
                                leave + Boston + in the morning
              Verb NP PP
              Verb PP
                                leaving + on Thursday
                                from + Los Angeles
     PP \rightarrow Preposition NP
```


Lexicon: NT expands to a terminal

```
Noun 
ightharpoonup flights \mid breeze \mid trip \mid morning \mid \dots
Verb 
ightharpoonup is \mid prefer \mid like \mid need \mid want \mid fly
Adjective 
ightharpoonup cheapest \mid non - stop \mid first \mid latest \mid other \mid direct \mid \dots
Pronoun 
ightharpoonup me \mid I \mid you \mid it \mid \dots
Proper-Noun 
ightharpoonup Alaska \mid Baltimore \mid Los Angeles \mid Chicago \mid United \mid American \mid \dots
Determiner 
ightharpoonup the \mid a \mid an \mid this \mid these \mid that \mid \dots
Preposition 
ightharpoonup from \mid to \mid on \mid near \mid \dots
Conjunction 
ightharpoonup and \mid or \mid but \mid \dots
```

Example: derivation from worksheet's grammar

Ambiguity NNS Ambiguity NNS


```
(s(_{NP}(_{PRP}\ She)(_{VP}(_{VBZ}\ eats)\\ (_{NP}(_{NN}\ sushi))\\ (_{PP}(_{IN}\ with)(_{NP}(_{NNs}\ chopsticks))))))\\ (s(_{NP}(_{PRP}\ She)(_{VP}(_{VBZ}\ eats)\\ (_{NP}(_{NP}\ sushi))(_{PP}\ (_{IN}\ with)(_{NP}(_{NNs}\ chopsticks)))))))\\
```

• All useful grammars are ambiguous multiple derivations with same yield

S

• [Parse tree representations: Nested parens or non-terminal spans]

She eats NN IN NP

[Examples from Eisenstein (2017)]

Constituents

- Constituent tree/parse is one representation of sentence's syntax. What should be considered a constituent, or constituents of the same category?
 - Movement tests
 - Substitution tests
 - Coordination tests
- Simple grammar of English
 - Must balance overgeneration versus undergeneration
 - Noun phrases
 - NP modification: adjectives, PPs
 - Verb phrases
 - Coordination
 - etc...
- Better coverage: machine-learned grammars, if you have a treebank (labeled dataset)

Is language context-free?

- CFGs nicely explain nesting and agreement (if you stuff grammatical features into the nonterminals)
 - The **processor** <u>has</u> 10 million times fewer transistors on it than todays typical microprocessors, <u>runs</u> much more slowly, and <u>operates</u> at five times the voltage...
 - $S \rightarrow NN VP$ $VP \rightarrow VP3S \mid VPN3S \mid ...$ $VP3S \rightarrow VP3S, VP3S, and VP3S \mid VBZ \mid VBZ \mid NP \mid ...$

Real sentences have massively ambiguous syntax!

Attachment ambiguity we eat sushi with chopsticks, I shot an elephant in my pajamas.

Modifier scope *southern food store*

Particle versus preposition *The puppy tore up the staircase.*

Complement structure The tourists objected to the guide that they couldn't hear.

Coordination scope "I see," said the blind man, as he picked up the hammer and saw.

Multiple gap constructions The chicken is ready to eat

```
( (S
    (NP-SBJ (NNP General) (NNP Electric) (NNP Co.) )
    (VP (VBD said)
      (SBAR (-NONE- 0)
        (S
          (NP-SBJ (PRP it) )
          (VP (VBD signed)
            (NP
              (NP (DT a) (NN contract) )
              (PP (-NONE- *ICH*-3) ))
            (PP (IN with)
              (NP
                (NP (DT the) (NNS developers) )
                (PP (IN of)
                  (NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project) ))))
            (PP-3 (IN for)
              (NP
                (NP (DT the) (JJ second) (NN phase) )
                (PP (IN of)
                  (NP
                    (NP (DT an) (JJ independent)
                       (ADJP
                         (QP ($ $) (CD 400) (CD million) )
                         (-NONE- *U*) )
                       (NN power) (NN plant) )
                    (, ,)
                     (SBAR
                       (WHNP-2 (WDT which))
                       (S
                         (NP-SBJ-1 (-NONE- *T*-2) )
                         (VP (VBZ is)
                           (VP (VBG being)
                             (VP (VBN built)
                               (NP (-NONE- *-1))
                               (PP-LOC (IN in)
                                 (NP
                                   (NP (NNP Burrillville) )
                                   (, ,)
                                   (NP (NNP R.I) ))))))))))))))))
```

Penn Treebank