
Classification Evaluation
CS 485, Fall 2024 

Applications of Natural Language Processing

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

Office hours & your TA!

• Brendan: Tuesdays 1-2pm, CS 238. That is, starting in my office ~15 minutes after class
ends. For quick questions, feel free to ask right after lecture.)

• Hui: Wednesdays 11am-12pm, LGRT T220.

• See Piazza pinned post for latest information & zoom link

2

Evaluation

• Evaluation
• Test on held-out data
• What precise metrics can we use? What makes

sense for
• Unbalanced data
• Multiclass

• How can we trade off types of errors at runtime,
after a model is trained?

• Annotation

3

False Pos vs False Neg

• Are the tradeoffs the same for different
applications or tasks?

4

• Definitions

Evaluation metrics

5

4.7 • EVALUATION: PRECISION, RECALL, F-MEASURE 11

As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrixconfusion

matrix
is a table for visualizing how an algorithm performs with respect to the human gold
labels, using two dimensions (system output and gold labels), and each cell labeling
a set of possible outcomes. In the spam detection case, for example, true positives
are documents that are indeed spam (indicated by human-created gold labels) that
our system correctly said were spam. False negatives are documents that are indeed
spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it for text classification tasks. That’s because accuracy
doesn’t work well when the classes are unbalanced (as indeed they are with spam,
which is a large majority of email, or with tweets, which are mainly not about pie).

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

Figure 4.4 A confusion matrix for visualizing how well a binary classification system per-
forms against gold standard labels.

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,
• Accuracy:

• But do we care about false positives and negatives equally?
• What about rare classes?

• Precision, Recall, F1

Precision, recall, F1

6

Decision threshold
• Problem: you'd like a higher precision model (for class SPAM), and

willing to sacrifice recall.
• Solution: predict SPAM more conservatively: only if probability exceeds

a threshold

7

Default decision rule:

Thresholded decision rule:

Bias Term)
(const, large, small)

• How do errors change as threshold increases?

9

Decision threshold

Precision-Recall curve

• Different models may trade off precision and
recall

• For a single model, different decision thresholds
may trade off precision and recall

• View them jointly with a precision-recall
curve

10

11

Precision-Recall curve

Multiclass metrics
• Every class has its own TP, FP, FN counts!

12

from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 1, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
 precision recall f1-score support

 class 0 0.67 1.00 0.80 2
 class 1 0.00 0.00 0.00 1
 class 2 1.00 0.50 0.67 2

 accuracy 0.60 5
 macro avg 0.56 0.50 0.49 5
weighted avg 0.67 0.60 0.59 5

• Common aggregations: micro
and macro averages. (Tradeoffs?)

Do I have enough labels?

• For training, hundreds to thousands of annotations may be needed
for reasonable performance

• Current work: how to usefully make NLP models with <10 or <100
training examples. "Few-shot learning"

• Exact amounts are difficult to know in advance. Can do a learning
curve to estimate if more annotations will be useful.

• But where do the labels come from?

13

