Classification Evaluation

CS 485, Fall 2024 Applications of Natural Language Processing

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

Office hours & your TA!

Hui Wei

PhD student in Computer Science

College of Information & Computer Sciences

University of Massachusetts, Amherst

Email: huiwei@cs.umass.edu

[About Me] [Research Interests] [Experiences] [Honors and Awards] [Services] [Miscellaneous] [Hobbies]

- **Brendan: Tuesdays 1-2pm, CS 238**. That is, starting in my office ~15 minutes after class ends. For quick questions, feel free to ask right after lecture.)
- Hui: Wednesdays 11am-12pm, LGRT T220.
- See Piazza pinned post for latest information & zoom link

Evaluation

- Evaluation
 - Test on held-out data
 - What precise metrics can we use? What makes sense for
 - Unbalanced data
 - Multiclass
 - How can we trade off types of errors at runtime, after a model is trained?
- Annotation

False Pos vs False Neg

Definitions

 Are the tradeoffs the same for different applications or tasks?

Evaluation metrics

gold standard labels				
system output labels	system positive system negative	gold positive	gold negative	
		true positive	false positive	$\mathbf{precision} = \frac{tp}{tp+fp}$
		false negative	true negative	
		$recall = \frac{tp}{tp+fn}$		$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$

Figure 4.4 A confusion matrix for visualizing how well a binary classification system performs against gold standard labels.

- Accuracy:
 - But do we care about false positives and negatives equally?
 - What about rare classes?
- Precision, Recall, F1

Precision, recall, F1

Decision threshold

- Problem: you'd like a higher precision model (for class SPAM), and willing to sacrifice recall.
- Solution: predict SPAM more conservatively: only if probability exceeds a threshold

Default decision rule:

Thresholded decision rule:

Visualizing a classifier in feature space

"Bias term"

Feature vector

x = (1, count "happy", count "hello")

Weights/parameters $\beta = (const, large, small)$

50% prob where

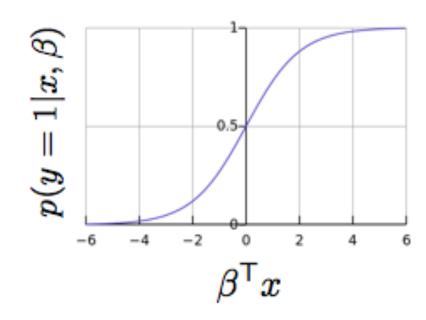
$$\beta^{\mathsf{T}} x = 0$$

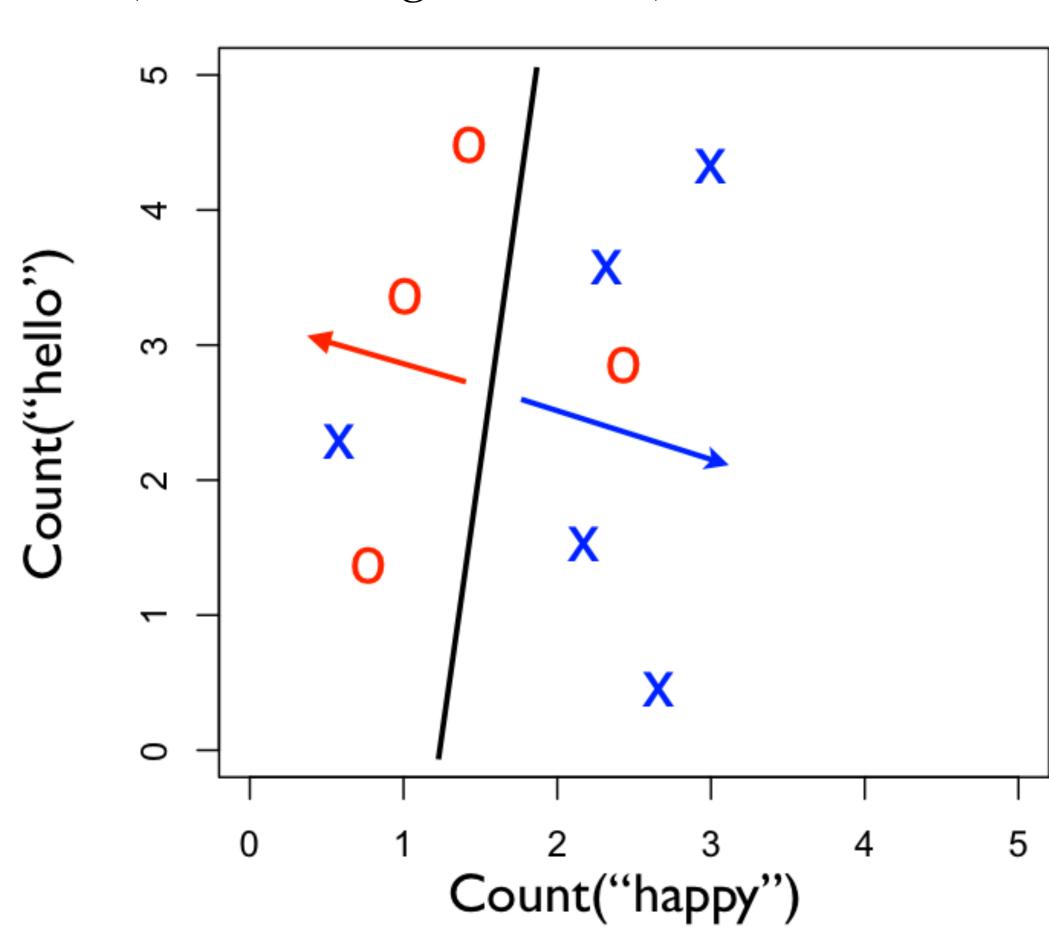
Predict y=1 when

$$\beta^{\mathsf{T}}x > 0$$

Predict y=0 when

$$\beta^{\mathsf{T}} x \leq 0$$





Decision threshold

• How do errors change as threshold increases?

Precision-Recall curve

- Different models may trade off precision and recall
- For a single model, different decision thresholds may trade off precision and recall
- View them jointly with a precision-recall curve

Precision-Recall curve

Multiclass metrics

Every class has its own TP, FP, FN counts!

```
from sklearn.metrics import classification report
>>> y_true = [0, 1, 2, 2, 0]
>>> y pred = [0, 0, 2, 1, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
              precision
                           recall f1-score
                                             support
                   0.67
                             1.00
                                        0.80
     class 0
                             0.00
                                       0.00
     class 1
                   0.00
                   1.00
     class 2
                                       0.67
                             0.50
    accuracy
                                        0.60
                   0.56
                                       0.49
  macro avg
                             0.50
weighted avg
                   0.67
                             0.60
                                        0.59
```

• Common aggregations: *micro* and *macro* averages. (Tradeoffs?)

Do I have enough labels?

- For training, hundreds to thousands of annotations may be needed for reasonable performance
 - Current work: how to usefully make NLP models with <10 or <100 training examples. "Few-shot learning"
- Exact amounts are difficult to know in advance. Can do a learning curve to estimate if more annotations will be useful.

But where do the labels come from?