Classification Evaluation

CS 485, Fall 2024 Applications of Natural Language Processing

> Brendan O'Connor College of Information and Computer Sciences University of Massachusetts Amherst

Office hours & your TA!

Hui Wei

PhD student in Computer Science

College of Information & Computer Sciences

University of Massachusetts, Amherst

Email: huiwei@cs.umass.edu

[About Me] [Research Interests] [Experiences] [Honors and Awards] [Services] [Miscellaneous] [Hobbies]

- Brendan: Tuesdays 1-2pm, CS 238. That is, starting in my office ~15 minutes after class ends. For quick questions, feel free to ask right after lecture.)
- Hui: Wednesdays 11am-12pm, LGRT T220.
- See Piazza pinned post for latest information & zoom link

Evaluation

- Evaluation
 - Test on held-out data
 - What precise metrics can we use? What makes sense for
 - Unbalanced data
 - Multiclass
 - How can we trade off types of errors at runtime, after a model is trained?
- Annotation

False Pos vs False Neg
• Definitions
$$y : 2dd-5+d$$
 label
 $Acc = \sqrt{2} \cdot 12y_i = \hat{y}_i \hat{z}$ $\hat{y} : predected$ label
 S_{pam} classif \hat{z} False Pos \hat{z} $\hat{y} = 1$ but $y = 0$
 $False Neg \hat{z}$ $\hat{y} = 0$ but $y = 1$
• Are the tradeoffs the same for different
Asymmetry costs
 $Markh Tests$
 $Credit Card Frand$

- Accuracy:
 - But do we care about false positives and negatives equally?
 - What about rare classes? Jone These The Communication. Recall, F1
- Rrecision, Recall, F1

Decision threshold

- Problem: you'd like a higher precision model (for class SPAM), and willing to sacrifice recall.
- Solution: predict SPAM more conservatively: only if probability exceeds a threshold

Default decision rule:
$$\Im = 1 \underbrace{\underbrace{}} P(y=1|x) > 0.5 \underbrace{}$$

 $\Im = 1 \underbrace{\underbrace{}} P(y=1|x) > 0.5 \underbrace{}$
Thresholded decision rule:
 $t=0.9$

Visualizing a classifier in feature space

Decision threshold

• How do errors change as threshold *increases*?

Precision-Recall curve

- Different models may trade off precision and recall
- For a single model, different decision thresholds may trade off precision and recall
- View them jointly with a **precision-recall curve**

Precision-Recall curve

Multiclass metrics

• Every class has its own TP, FP, FN counts!

))
(

• Common aggregations: *micro* and *macro* averages. (Tradeoffs?)

Maeromo: Mran A al (hose)

Do I have enough labels?

- For training, hundreds to thousands of annotations may be needed for reasonable performance
 - Current work: how to usefully make NLP models with <10 or <100 training examples. "Few-shot learning"
- Exact amounts are difficult to know in advance. Can do a **learning curve** to estimate if more annotations will be useful.

But where do the labels come from?