
Homework 3

CS 485, UMass Amherst, Fall 2023

Deliverables

Create your writeup as a PDF with any tool you like, and submit to Gradescope. Do not include
large amounts of code in your writeup. (Small snippets may be appropriate if they help you
answer a question in a concise and useful way.) Submit your code to a separate Gradescope
assignment entry.

1 CKY Implementation

In this section, you will implement the CKY algorithm for an unweighted CFG. Start with the
starter code cky.py.

1.1 CKY acceptance

Implement the acceptance version of CKY as cky acceptance(), which returns True if there
is an “S“ covering the entire sentence (in other words, assume S is the only start symbol). Use
the “GRAMMAR1“ default grammar. Does it return True or False for the following sentences?
Please pprint() the chart cells for each case as well.

• the the

• the table attacked a dog

• the cat

Hint: A simple way to implement the chart cells is by maintaining a list of nonterminals at the
span. This list represents all possible nonterminals over that span.
Hint: pprint()ing the CKY chart cells may be useful for debugging.
Hint: Python dictionaries allow tuples as keys. For example, d={}; d[(3,4)] = []. A slight
shortcut is that d[3,4] means the same thing as d[(3,4)].

1.2 CKY parsing

Implement the parsing version of CKY, which returns one of the legal parses for the sentence
(and returns None if there are none). If there are multiple real parses, we don’t care which
one you print. Implement this as cky parse(). You probably want to start by copying your
cky acceptance() answer and modifying it. Have it return the parse in the following format,
using nested lists to represent the tree (this is a simple Python variant of the Lisp-style S-expression
that’s usually used for this.)

1



[’S’,
[[’NP’, [[’Det’, ’the’], [’Noun’, ’cat’]]],
[’VP’, [[’Verb’, ’attacked’],

[’NP’, [[’Det’, ’the’], [’Noun’, ’food’]]]]]]]

Print out the parses for the following sentences.

• the cat saw a dog

• the cat saw a dog in a table

• the cat with a table attacked the food

Hint: In the chart cells, you will now have to store backpointers as well. One way to do it is to store
a list of tuples, each of which is “(nonterminal, splitpoint, leftchild nonterm, rightchild nonterm)“.
For example, if the state “(’NP’, 3, ’Det’, ’Noun’)“ is in the cell for span (2,4), that means this is a
chart state of symbol NP, which came from a “Det“ at position (2,3) and a Noun at position (3,4).
Hint: It may be useful to use a recursive function for the backtrace.

1.3 Grammar improvement

Please revise the grammar as follows.

• Add four words to the lexicon: two verbs “attack” and “attacks”, and the nouns “cats” and
“dogs”.

• Revise the rules to enforce subject-verb agreement on number.

The new grammar should accept and reject the following sentences. Please run your parser on
these sentences and report the parse trees for the accepted ones. Also, describe how you changed
the grammar, and why.

• ACCEPT: “the cat attacks the dog”

• REJECT: “the cat attack the dog”

• ACCEPT: “the cats attack the dog”

• REJECT: “the cat with the food on a dog attack the dog”

Hint: you will need to introduce new nonterminal symbols, and modify the currently existing
ones.

1.4 Extra credit: Grammar engineering

Revise the grammar to incorporate coordination or other syntactic phenomena in English. Show
examples of what it can analyze, and describe what you did.

2



2 Dependency parser errors

Run a dependency parser that uses the Universal Dependencies representation and try it out
on some examples you make up. Feel free to use a web demo like from CoreNLP (https://
corenlp.run/) or from SpaCy (https://demos.explosion.ai/displacy-ent) for this.

Show a sentence where the parser makes an error. Show the parse itself (for example, from
a web visualization). Describe the error (including false positive edge(s) involved with the prob-
lem), and how to fix the error if you were to manually fix it.

Do this and draw a correct parse for the sentence.

Notes:

• We recommend trying shorter or intermediate length sentences, whose parses are easier to
understand. But at the same time, longer sentences are more likely to have errors. You could
start with something basic, then iteratively add more and more and see what happens.

• You’ll want to read the Universal Dependencies documentation for this, at
https://universaldependencies.org/

• As I showed in class, specifically for English relations the page is:
https://universaldependencies.org/en/dep/index.html

3 Social Media Error Analysis for NER

Here, you’ll use an off-the-shelf software package for NER. Feel free to use a web demo like
from CoreNLP (https://corenlp.run/) or from SpaCy (https://demos.explosion.ai/
displacy-ent). You can also download and run an NER package yourself; we recommend
Stanza or SpaCy, which are both open-source Python libraries.

The NLP package you’re using was probably not developed for social media. Let’s test how
well it does. This general problem is called domain shift, when something about the training data
is systematically different than the data used at runtime; here, there’s a shift in many things,
including genre.

Run the system’s named entity recognizer on twenty sentences from your HW2 annotation
dataset. How well does it do at recognizing names? Read through the system’s output and think-
ing about what it’s getting right and wrong, before summarizing your findings. This is called error
analysis. In fancier error analysis you can manually annotate the error types and do a statistical
report; but here it’s fine to be qualitative.

3.1 Error types and examples

Describe at least two types of errors the NER system tends to make on the text. For example,
maybe there are certain types of entities it misses. For each error type, give an example. Make
sure to describe both false positive and false negative errors.

3.2 Feature proposal

Propose a feature that might help fix some of the errors you observed, and explain why it might
help. (This is a research hypothesis; if this were your project, you could then try actually doing it!)

3

https://corenlp.run/
https://corenlp.run/
https://demos.explosion.ai/displacy-ent
https://universaldependencies.org/
https://universaldependencies.org/en/dep/index.html
https://corenlp.run/
https://demos.explosion.ai/displacy-ent
https://demos.explosion.ai/displacy-ent

	CKY Implementation
	CKY acceptance
	CKY parsing
	Grammar improvement
	Extra credit: Grammar engineering

	Dependency parser errors
	Social Media Error Analysis for NER
	Error types and examples
	Feature proposal


