
Generative LLMs (II)

CS 485, Fall 2023 
Applications of Natural Language Processing 
https://people.cs.umass.edu/~brenocon/cs485_f23/

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

https://people.cs.umass.edu/~brenocon/cs485_f23/

2 [Raffel et al. 2020]

https://arxiv.org/pdf/1910.10683.pdf

3

Instruction-tuned LLMs

[Ouyang et al., 2022, Taori et al. 2023]

https://arxiv.org/abs/2203.02155
https://crfm.stanford.edu/2023/03/13/alpaca.html

4 [Ouyang et al., 2022]

https://arxiv.org/abs/2203.02155

• Do LLMs exhibit "intelligence", skills, or
information processing abilities?

• Many metrics of semantic classification or
knowledge-based question-answering improve
with larger training data and/or models

• Intuitively newer LLMs seem better?

5

Do we know much about LLMs?

1. LLMs predictably get more capable with increasing investment, even without targeted innovation.

2. Many important LLM behaviors emerge unpredictably as a byproduct of increasing investment.

3. LLMs often appear to learn and use representations of the outside world.

4. There are no reliable techniques for steering the behavior of LLMs.

5. Experts are not yet able to interpret the inner workings of LLMs.

6. Human performance on a task isn't an upper bound on LLM performance.

7. LLMs need not express the values of their creators nor the values encoded in web text.

8. Brief interactions with LLMs are often misleading.

6

[Bowman 2023]

https://arxiv.org/abs/2304.00612

• Question answering for multiple-choice standardized tests 
From the GPT-4 paper:

7

Exam GPT-4 GPT-4 (no vision) GPT-3.5

Uniform Bar Exam (MBE+MEE+MPT) 298 / 400 (~90th) 298 / 400 (~90th) 213 / 400 (~10th)

LSAT 163 (~88th) 161 (~83rd) 149 (~40th)

SAT Evidence-Based Reading & Writing 710 / 800 (~93rd) 710 / 800 (~93rd) 670 / 800 (~87th)

SAT Math 700 / 800 (~89th) 690 / 800 (~89th) 590 / 800 (~70th)

Graduate Record Examination (GRE) Quantitative 163 / 170 (~80th) 157 / 170 (~62nd) 147 / 170 (~25th)

Graduate Record Examination (GRE) Verbal 169 / 170 (~99th) 165 / 170 (~96th) 154 / 170 (~63rd)

Graduate Record Examination (GRE) Writing 4 / 6 (~54th) 4 / 6 (~54th) 4 / 6 (~54th)

USABO Semifinal Exam 2020 87 / 150 (99th - 100th) 87 / 150 (99th - 100th) 43 / 150 (31st - 33rd)

USNCO Local Section Exam 2022 36 / 60 38 / 60 24 / 60

Medical Knowledge Self-Assessment Program 75 % 75 % 53 %

Codeforces Rating 392 (below 5th) 392 (below 5th) 260 (below 5th)

AP Art History 5 (86th - 100th) 5 (86th - 100th) 5 (86th - 100th)

AP Biology 5 (85th - 100th) 5 (85th - 100th) 4 (62nd - 85th)

AP Calculus BC 4 (43rd - 59th) 4 (43rd - 59th) 1 (0th - 7th)

AP Chemistry 4 (71st - 88th) 4 (71st - 88th) 2 (22nd - 46th)

AP English Language and Composition 2 (14th - 44th) 2 (14th - 44th) 2 (14th - 44th)

AP English Literature and Composition 2 (8th - 22nd) 2 (8th - 22nd) 2 (8th - 22nd)

AP Environmental Science 5 (91st - 100th) 5 (91st - 100th) 5 (91st - 100th)

AP Macroeconomics 5 (84th - 100th) 5 (84th - 100th) 2 (33rd - 48th)

AP Microeconomics 5 (82nd - 100th) 4 (60th - 82nd) 4 (60th - 82nd)

AP Physics 2 4 (66th - 84th) 4 (66th - 84th) 3 (30th - 66th)

AP Psychology 5 (83rd - 100th) 5 (83rd - 100th) 5 (83rd - 100th)

AP Statistics 5 (85th - 100th) 5 (85th - 100th) 3 (40th - 63rd)

AP US Government 5 (88th - 100th) 5 (88th - 100th) 4 (77th - 88th)

AP US History 5 (89th - 100th) 4 (74th - 89th) 4 (74th - 89th)

AP World History 4 (65th - 87th) 4 (65th - 87th) 4 (65th - 87th)

AMC 103 30 / 150 (6th - 12th) 36 / 150 (10th - 19th) 36 / 150 (10th - 19th)

AMC 123 60 / 150 (45th - 66th) 48 / 150 (19th - 40th) 30 / 150 (4th - 8th)

Introductory Sommelier (theory knowledge) 92 % 92 % 80 %

Certified Sommelier (theory knowledge) 86 % 86 % 58 %

Advanced Sommelier (theory knowledge) 77 % 77 % 46 %

Leetcode (easy) 31 / 41 31 / 41 12 / 41

Leetcode (medium) 21 / 80 21 / 80 8 / 80

Leetcode (hard) 3 / 45 3 / 45 0 / 45

Table 1. GPT performance on academic and professional exams. In each case, we simulate the
conditions and scoring of the real exam. We report GPT-4’s final score graded according to exam-
specific rubrics, as well as the percentile of test-takers achieving GPT-4’s score.

5

• Is this a good way to assess LLMs?

• Davis 2015: significant limitations

https://arxiv.org/abs/1411.1629

• ELIZA: Weizenbaum 1966

• Eliza effect: humans easily fooled by computers (Reeves and Nass 2003)

8

: " : i .. :,-.:: . . . :
, : . • . .

: i i ;! , : :
• • i " " :

• . ' . . . • • . .

:::: : i
1 " 5 . " . . .

• . • : : . . ' ~ ~ . .

. : • . : , : •

. • . : . . .

¢ompu aI cma
• " .: : " " " • " : ; . i •

~ i : :

ELIZA A Computer Program
For the Study of Natural Language
Communication Between Man
And Machine
, J o s E P h ~VEIZENBA UM
Massach.usclls [nshl-ute qf Tcchnu[ogg,* Cambridge, Mass.

ELIZA is a program operating within the MAC time-sharing
system at MIT which makes certain kinds of natural language
conversation between man and computer possible. Input sen-
tences are analyzed on the basis of decomposition rules which
are triggered by key words appearing in the input text.
Responses are generated by reassembly rules associated with
selected decomposition rules. The fundamental technical prob-
lems with which ELIZA is concerned are: (1) the identification of
key words, (2) the discovery of minimal context, (3) the choice
of appropriate transformations, (4) generation of responses in
the absence of key words, and (5) the provision of an editing
capability for ELIZA "scripts". A discussion of some psychologi-
cal issues relevant to the ELIZA approach as well as of future
developments concludes the paper.

I n t r o d u c t i o n
I t is said that• to explain is to explain away. This maxim

is nowhere so well fulfilled as in the area of computer
programming, especially in what is ealled heuristic pro-
gramming and artifieiM intelligence. For in those realms
machines are made to behave in wondrous ways, often
suftieient to dazzle even the most experim~eed observer.
But once a particular program is unmasked, once its
inner workings are explained in language sufficiently plain
to induce understanding, its magic crumbles away; iL
st~mds revealed as a mere collection of procedures, each
quite comprehensible. The observer says to himself "I
could have written that" . With that thought he moves the
program in question from the shelf m~trked "intelligent",
to that reserved for curios, fit to be discussed only with
people less enlightened than he.

W o r k repor ted he re in was s u p p o r t e d (iu p ro t) b y P r o j e c t M A C ,
an _\-lIT resea rch p r o g r a m s p o n s o r e d b y the Advm~ced R e s e a r c h
P r , , j ec t s Aget ,cy, l)~l)ar~met~t ~,1" l)ofense , u n d e r Office of N a v a l
R e s e a r c h C o n t r a c t N u m b e r Nora'-4102(01).

* D e p a r t m e n t of E lee i r iea l E n g i n e e r i n g .

36 C o m n u t n i e a t i o n s o f t h e .~(',M

: - . . .

• . • . . .

---": t .7:g~~

:-: ; ; : i
A. G. O E T T I N G E R , Editor

7:~.S C:

5)~. ;. ~ ~- !
o

7?27 E

:2:~:

7~9 j ~

:7;2: Y :?

75~.7c_'-5

} } : ~:<:..

}:

-.5~::a

:: L 2: .:
. i :

i. :::! 7:

i);4p y L >

>>7-

::) :2>J2 {
%

i::i ::7

G { •)i : ::.73: ::::,

Tile object of this paper is to cause just such a re-
evaln~tion of the program about to be "explained". Few }

4

programs ever needed it more.

ELIZA Prograrn }
ELIZA is a program which makes naturM hmguage

conversation with a Colnputer possible. Its present imple-
mentation is oa the MAC time-sharing system at MIT. i:
I t is written in 5lAD-SLIP [4] for the IBM 7091. Its name
was chosen to emphasize that it nmy be incrementally
improved by its users, since its language abilities may be
continually improved by a "teacher". Like the Eliza 0!
Pygmalion fame, it (ran be made to appear even more
civilized, t,he relation of appearance to realiW, however,
remaining in ~he donmin of the playwright.

For ll~e present purpose it is sufficient to characterize
the ~[A() system as one which permits an individual to
operate a full seale computer from a remotely located type-
writer. The individual operator has the illusion thai, he is
the sole riser of the computer complex, while in facl~ others
may be "time-sharing" the system with him. What is
important here is that the computer can read messages
typed on the typewriter and respond by writing oil the
same instrument. %'he time between the computer's
receipt of a message and the appearance of its response is
a function of the program controlling the dialogue and of
such MAC system parmneters as the number of users
currently eon'esponding with the system. These latter
parameters generally contribute so little to the overall
response time that conversational interaction with the
computer need never involve truly intolerable delays.

When in conversation with ELIZA, tile user types in
some statement or set of statements in natm'al language
using normal punetua.tion and sentence structures. Only
the question mark may not be used, because it is inter-
preted as a line delete character by the MAC system. The
user's sratement is terminated by a double carriage return
which serves to turn eontrol over to ELIZA. ELIZA It hen
analyzes the user's statement and generates some response
whieh it types out.. Control is then again with the user.

A ltypieal conversation is the following:
M e n are all a l ike .
I N W H A T W A Y
T h e y ' r e a lways b u g g i n g us a b o u t s o m e t h i n g or o t h e r .
CAN Y()U T H I N K (H: A S P E C I F I C E X A M P L E
Well , m y b o y f r i e n d m a d e me come here.
Y O U R B O Y F R I E N D M A I) E YOU C O M E H E R E
t i e s a y s i ' m dep re s sed m u c h of t he t ime . i : - (- :
[AM S O R R Y T O H E A R Y O U A R E D E P R E S S E D

% o l u m e 9 / N u m b e r / / J a n u a r y . , 1966

2 . :

i :

e r ep r e -
t h a t of
y rule~
a r n ~ i n w
r e q u i r e

w o r d
; b e g i m
es O i l

lowing:

o n r u l e
l e a s s o ;

r u e L u r e
[e v e l Of

g i n n i n g
. s e I n b l y
" e d e t e r : :
decon>
) r d &nd
d e o o m :
o e . o v e r

1 T I Y V ~ i r t :

:: st:t?ue-:
, n a r y is
~to t h e
p o r t e n t :
r e n t l y)
~ e y l i s t
o n f i z e d
Y) a 7

5 ~ i e l d s
v e e r . t o t

) n t a i n s
r e a t e d , } i

t a i n s a:
o l a ~ e e d :

l ~ t r g - e s t i
x x - o l - d s . i
\-" e e t o g

t t e x t ,
1 h i z e d

) l i e c I t o
~ v h i e l n
e o u t l d :

l t h e n :::
f o l _ t ha{
n o t a

u s l i s t

Y , 1 9 6 6 :
:i}

.... ~,-.~,~,~ciT~o.~., ~, operations_ that SLIP makes available, the
a,:ttta] identification of a keyword leaves as its i)rim:ipal
product a pointer to the list of decomposition (and hence
rc:t~se~bly) rules associated with the identified keyword.
()~e resui~ of this strategy is that often less time is required
to discover that a given word is >_of in the keyword dic-
~io~ary than to locate it if it. is there. However, tile location
of a keyword yields pointers to all inforntation associated
with that word.

Some conversational protocols require that certain
transformations be made on certain words of .the input text
iiidependel~tly of any contextual considerations. The first
conversation displayed in this paper, for example, requires
that firsb person pronouns be exchanged for second person
pronouns and vice versa throughout tile input text. There
may be further transformations but these minimal sub-
stitutions are unconditional. Simple substitution rules
ought not to be elevated to the level of transformations,
nor should the words involved be forced to carry with them
all the structure required for the fully complex case.
],'urthermore, unconditional substitutions of single words
for single words can be accomplished during the text scan
itself, not as a Lransformat.ion of the entire text subsequent
to scanning. To facilitate the realization of these
desiderata, any word in the key dictionary, i.e., at the
top of a key fist, structure., may be followed by an equM
sign followed by whatever word is to be its substitute.
Tranformation rules may, but need not, follow. If none
do follow such a subst, itution rule, then the substitution is
made on the fly, i.e:, during text scanning, but the word
in question is not identified as a keyword for subsequent
purposes. Of course, a word may be both subtituted for
and be a keyword as well. An example of a simple sub-
stitution is

(YOUIISELF = MYSELF).

Neither "yourself" nor "myself" are keywords in the
particular script from which this example was chosen.

The fact that keywords can have ranks or precedences
has already been mentioned. The need of a ranking mecha-
nism may be established by an example. Suppose an input
sentence is " I know everybody laughed at me." A script
may tag the word "I" as well as the word "cvetTbody"
as a keyword. Without differential ranking, " I " occurring
first would determine the transformation to be applied.
A typical response might be "You say you know everybody
laughed at. you." But. the important message in the input
sentence begins with the word "everybody". I t is very
often true that when a person speaks in terms of universals
such as "everybody", "always" and "nobody" he is really
referring to some quite specific event or person. By giving
"'everybody" a higher rank than "I", the response "Who
in particular are you thinking of" may be generated.

The specific mechanism employed in ranking is that the
rank of every keyword encountered (absence of rank
implies rank equals 0) is compared with the rank of the
highest, ranked keyword already seen. If the rank of the

V o l u m e 9 / N u m b e r 1 / .]anuary, 1966

new word is higher than t h a t of any previously encoun-
tered word, the pointer to tile transformation rules
associated with the new w o r d is placed on top of a list
called the keystack, o therwise it is placed on the bottom
of the keystaek. Wizen the t e x t scan terminates, the key-
stack has at its top a p o i n t e r associated with the highest
ranked keyword encounte red in the scan. The remaining
pointers in the stack m a y n o t be monotonically ordered
with respect to the ranks of the words from which they
were derived, but they are near ly so--in any event they
are in a useful attd in te res t ing order. Figure 2 is a simpli-

,

~ k e ' / s t e c k ~ J

' ' ' * ! : Y E S

-~ ~.._i k..!i_IH~[_/~--
_ t

Y g S

t ~' ~c___F-]:;,:~:o~ 1

FIG. 2. Basic flow diagram of keyword detect.ion

fled flow diagram of k e y w o r d detection. The rank of a
keyword must, of course, a!so be associated with the
keyword. Therefore it m u s t appear on the keyword list
structure. I t may be found , if at all, just in front of the
list of transformation ru les associated with the keyword.
As an example consider t h e word " M Y " in a particular
script. Its keyword list m a y be as follows:

(MY -- YOUR. 5 (transformation rules)).

Such a list would mean t h a t whenever the word "MY" is
encountered in any text, i t would be replaced by the word
"YOUR". Its rank would b e 5.

Upon completion of a g i v e n text scan, the keystack is
either empty or contains pointers derived from the key-
words found in the text. E a c h of such pointers is actually a
sequence reader--a SLip mechanism which facilitates
scanning of l is ts--point ing into its particular key list in
such a way that one sequenc ing operation to the right
(SEQLR) will sequence i t t o the first set of transformation
rules associated with its keyword , i.e., to the list

((Dr) (Rt, ,) (R, ,e) . . . (R~,R, .~)) .

The top of that list, of course, is a list which serves a
decomposition rule for t h e subject text. The top of the
keystack contains the first, pointer to be activated.

The decomposition ru le D~ associated with the keyword
K, i.e., {(D0, K}, is n o w tr ied. It may fail however. For
example, suppose the i n p u t tex t was:

You are very helpful.

C o n a r n u n i c a t i o n s of th e ACM 39

Prompting
• Idea: fashion a good context, or question for the LLM, so that its

completion supplies an answer/phrase/sentence or text label you
want

• Very bleeding edge work right now

• See two practical guides in https://people.cs.umass.edu/~brenocon/

cs485_f23/schedule.html

• Pro:

• no supervision! ("zero-shot")

• incorporate human knowledge into prompt?

• Con:

• how to select good prompts??

• prompt choice is tightly interleaved with the LLM

• And instruction-tuned LLMs are trained/tuned to do well for prompt
engineering...

9

https://people.cs.umass.edu/~brenocon/cs485_f23/schedule.html
https://people.cs.umass.edu/~brenocon/cs485_f23/schedule.html

• Prompting for zero-shot classification

10

Figure 1: We assess the potential of LLMs as multi-purpose tools for CSS. We identify core subject areas in prior CSS work
and select 24 diverse and representative tasks from across these fields (top). Then, we segment tasks into distinct discourse types
and evaluate both open-source and industrial LLMs across this benchmark using zero-shot prompting (bottom).

Zhuo et al., 2023; Goyal et al., 2022). If LLMs
can similarly provide reliable labels and summary
codes through zero-shot prompting, CSS research
is broadened a wider range of hypotheses than cur-
rent tools and data resources support. Zero-shot
viability in this space is our primary research ques-
tion. To effectively harness the power of LLMs,
behavioral researchers should understand the pros
and cons of different modeling decisions (model-
selection), as well as how these decisions intersect
with their fields of specialization (domain-utility)
and downstream use-cases (functionality). By eval-
uating LLMs on an extensive suite of CSS tasks,
this work provides researchers with a road map
with answers to the following research questions:

• (RQ1) Viability: Are LLMs able to augment
the human annotation pipeline? Can they re-
place annotation entirely?

• (RQ2) Model-Selection: How do different
aspects of LLMs (e.g., model size, pretrain-
ing) affect their performances on CSS tasks?

• (RQ3) Domain-Utility: Are zero-shot LLMs
specially adapted for better results in some
fields of science rather than others?

• (RQ4) Functionality: Are zero-shot LLMs
equipped to assist with labeling tasks (classifi-
cation) or summary-explanatory tasks (gener-
ation) or both?

The research pipeline in Figure 1 allows us to
answer these questions. First, we survey the so-
cial science literature to understand where LLMs

could serve as analytical tools (§2). Then we opera-
tionalize each use-case with a set of representative
tasks (§3). Specifically, classification and parsing
methods can help researchers code for linguistic,
psychological, and cultural categories (§3.1-3.3)
while generative models can explain underlying
constructs (e.g., figurative language, hate speech,
and misinformation), and restructure text accord-
ing to established theories like cognitive behavioral
therapy (§3.4). With a final evaluation suite of 24
tasks, we test the zero-shot performance of 13 lan-
guage models with differing architectures, sizes,
pre-training, and fine-tuning paradigms (§5, 6).
This allows us to suggest actionable steps for social
scientists interested in co-opting LLMs for research
(§7). Specifically, we suggest a blended supervised-
unsupervised scheme for human-AI partnered la-
beling and content analysis.

Concretely, our analysis reveals that, except in
minority cases, prompted LLMs do not match or
exceed the performance of carefully fine-tuned clas-
sifiers, and the best LLM performances are often
too low to entirely replace human annotation. How-
ever, LLMs can achieve fair levels of agreement
with humans on labeling tasks. These results are
not limited to a subset of academic fields, but rather
span the social sciences across a range of conversa-
tion, utterance, and document-level classification
tasks. Furthermore, the benefits of LLMs are com-
pounded as models scale up. This suggests that
LLMs can augment the annotation process through
iterative joint-labeling, significantly speeding up
and improving text analysis in the social sciences.

[Ziems et al., 2023]

Effective Prompt Guideline Reference Guideline Example

When the answer is categorical, enumerate options as al-
phabetical multiple-choice so that the output is simply the
highest-probability token (‘A’, ‘B’).

Hendrycks et al. (2021) {$CONTEXT}

Which of the following describes the
above news headline?
A: Misinformation
B: Trustworthy
{$CONSTRAINT}

Each option should be separated by a newline () to
resemble the natural format of online multiple choice ques-
tions. More natural prompts will elicit more regular behav-
ior.

Inverse Scaling Prize

To promote instruction-following, give instructions after
the context is provided; then explicitly state any con-
straints. Recent and repeated text has a greater effect on
LLM generations due to common attention patterns.

Child et al. (2019) {$CONTEXT}
{$QUESTION}

Constraint: Even if you are uncertain,
you must pick either “True” or “False”
without using any other words.

Clarify the expected output in the case of uncertainty.
Uncertain models may use default phrases like “I don’t
know,” and clarifying constraints force the model to answer.

No Existing Reference

When the answer should contain multiple pieces of infor-
mation, request responses in JSON format. This
leverages LLM’s familiarity with code to provide an output
structure that is more easily parsed.

MiniChain Library {$CONTEXT}
{$QUESTION}

JSON Output:

Table 1: LLM Prompting Best Practices to generate consistent, machine-readable outputs for CSS tasks. These techniques
can help solve overgeneralization problems on a constrained codebook, and they can force models to answer questions with
inherent uncertainty or offensive language. See full example prompts in the Appendix.

process provides a fair comparison across all mod-
els. Additionally, it is a reasonable estimate of the
performance of a prompt written by a non-AI ex-
pert using LLMs to build a CSS tool. However,
further work is needed to understand the upper-
bound prompted performance for each LLM with
task-specific prompt engineering.

In order to receive consistent, reproducible re-
sults we utilize a temperature of zero for all LLMs.
For models which provide probabilities directly, we
constrain decoding to the valid output classes 2. For
other models, such as ChatGPT, we use logit bias
to encourage valid outputs during decoding3. All
other generation parameters are left at the default
settings for each model.

4.3 Test Set Construction

For each task, we evaluate a class-stratified sample
of at most 500 instances from the dataset’s desig-
nated test set. If the designation is missing, we take
the class-stratified sample from the entire dataset.
Our sampled test sizes and class counts are in Ta-
ble 8. All datasets, prompts, and model outputs are
released for future comparison and analysis.4

2Probability outputs for HuggingFace and GPT-3
3Logit Bias reference for ChatGPT
4Data Directory of our Github Project

4.4 Evaluation Metrics

Automatic Evaluation Apart from the multi-
label classification of Event Detection and the struc-
tured parsing task of Event Argument Extraction,
all classification tasks are evaluated using accuracy.
Since we mapped the label space for each task to
an alphabetical list of candidate options and set
the logit bias to favor these options (§4.2), eval-
uation scripts are straightforward string matching
procedures. For Event Detection, we use F1 scores.

Human Evaluation For high-variation tasks like
dialogue, word-overlap-based machine translation
metrics like BLEU and ROUGE have low corre-
lation with human quality judgments (Liu et al.,
2016). For open-ended generation tasks in particu-
lar, embedding-similarity metrics like BERTScore
are insufficient (Novikova et al., 2017) and human
evaluation is strongly preferable (Santhanam and
Shaikh, 2019). However, even human evaluations
can exhibit high variance and instability due to cul-
tural and individual differences (Peng et al., 1997).
Pilot rounds revealed a high degree of variance and
unpredictability in our evaluation, especially from
crowdworkers (see Appendix A), and thus we opted
to use expert annotations for generation results in
this work. We discuss implications and solutions
to CSS evaluation challenges in Section 7.4.

The authors opt to serve as expert annotators.
Annotators are blinded to the corresponding mod-

[]

https://arxiv.org/abs/2305.03514

• Abilities at classification are mixed

11

Automated Annotation with Generative AI Requires

Validation

Nicholas Pangakis∗, Samuel Wolken†, and Neil Fasching‡

June 2, 2023

Abstract

Generative large language models (LLMs) can be a powerful tool for augmenting text

annotation procedures, but their performance varies across annotation tasks due to prompt

quality, text data idiosyncrasies, and conceptual di�culty. Because these challenges will persist

even as LLM technology improves, we argue that any automated annotation process using an

LLM must validate the LLM’s performance against labels generated by humans. To this end,

we outline a workflow to harness the annotation potential of LLMs in a principled, e�cient way.

Using GPT-4, we validate this approach by replicating 27 annotation tasks across 11 datasets

from recent social science articles in high-impact journals. We find that LLM performance

for text annotation is promising but highly contingent on both the dataset and the type

of annotation task, which reinforces the necessity to validate on a task-by-task basis. We

make available easy-to-use software designed to implement our workflow and streamline the

deployment of LLMs for automated annotation.

∗Department of Political Science, University of Pennsylvania
†Department of Political Science and Annenberg School for Communication, University of Pennsylvania
‡Annenberg School for Communication, University of Pennsylvania
Author contributions: NP and SW developed the code, analyzed the data, and wrote the manuscript. NP, SW,

and NF collected data and edited the manuscript.
We thank Yphtach Lelkes for his support and guidance and Daniel Hopkins for his helpful comments. We also

thank any author that sent us their data.

ar
X

iv
:2

30
6.

00
17

6v
1

 [c
s.C

L]
 3

1
M

ay
 2

02
3

[Pangakis et al., 2023]

https://arxiv.org/abs/2306.00176

12

Step 1: Researcher creates task-
specific instructions (i.e., a code-
book).

Step 2: Using codebook, subject
matter experts annotate random sub-
set of text samples.

Step 3: Use LLM to annotate a sub-
set of the human-labeled data using
the same codebook. Then, evaluate
performance by comparing the LLM
labels against the human labels.

Step 4: If low performance, refine
codebook to emphasize incorrect clas-
sifications. If necessary, repeat steps
2 and 3 with updated codebook.

Step 5: Using final codebook, test
LLM performance on remaining
human-labeled samples.

Figure 1: Workflow for augmenting text annotation with an LLM

strong correlation between higher consistency scores and the probability of the classification being

correct, consistency scores are an e↵ective way for researchers to identify edge cases.

2 Workflow and validation

In the absence of clear guidance on a recommended workflow for utilizing LLMs for annotation

tasks, researchers run the risk of deploying these tools despite poor performance. Displayed in

Figure 1, we o↵er a five-step workflow for incorporating LLMs in a way that foregrounds human

judgment, includes an opportunity for human-in-the-loop refinement of instructions, and gives a

clear indication of LLM performance with minimal ex-ante investment of resources. We designed

4

[Pangakis et al., 2023]

https://arxiv.org/abs/2306.00176

13

Study Annotation tasks

Gohdes (2020) Code Syrian death records for specific type of killing: targeted or
untargeted

Hopkins, Lelkes,
& Wolken (2023)

Coding headlines, tweets, and Facebook share blurbs to identify
references to social groups defined by a) race/ethnicity; b) gen-
der/sexuality; c) politics; d) religion

Schub (2020) Code presidential-level deliberation texts from the Cold War as
political or military

Busby, Gubler,
& Hawkins
(2019)

Code open-ended responses for three rhetorical elements: attribu-
tion of blame to a specific actor, the attribution of blame to a
nefarious elite actor, and a positive mention of the collective people

Müller (2021) Code sentences from party manifestos for temporal direction: past,
present, or future

Cusimano &
Goodwin (2020)

Code respondents’ written statements on climate change for the
presence of either (a) generic reasoning about beliefs or (b) sup-
porting evidence for the belief

Yu & Zhang
(2023)

Code respondents’ plans for the future into two cate-
gories:proximate future and distant future

Card et al.
(2022)

Code congressional speeches for whether they are about immigra-
tion, along with an accompanying tone: proimmigration, antiimmi-
gration, or neutral

Peng, Romero,
& Horvat (2022)

Code whether tweets express criticism with respect to the findings
of academic papers

Saha et al.
(2020)

Code Gab posts as a) fear speech, b) hate speech, or c) normal. Fur-
ther, a post could have both fear and hate components, and,thus,
these were annotated with multiple labels

Wojcieszak et al.
(2020)

Code whether a quote tweet was negative, neutral or positive to-
ward the message and/or the political actor, independently of the
tone of the original message

Table A2: Descriptions of annotation tasks replicated in analysis.

19

[Pangakis et al., 2023]

https://arxiv.org/abs/2306.00176

14

took approximately 2–3 hours to complete seven iterations (see “Consistency scores” section below).

Together, the low cost and relatively rapid speed demonstrate the potential value of LLM-augmented

annotation for many social science text analysis tasks.

3 Results

Classification results are shown in Table 1. The results reported here are based on “held

out” text samples (i.e., not the text samples used in the codebook update process from Step 4 of

the workflow). Across the 27 tasks, LLM classification performance achieved a median F1 score

of 0.707. Figure 2 shows performance on precision and recall for each classification task. As is

apparent in this figure, LLM classification performance is stronger in recall than precision for 20

of the 27 tasks. On eight of the 27 tasks, the LLM achieves remarkably strong performance with

precision and recall both exceeding 0.7.

Metric Minimum 25th percentile Mean Median 75th percentile Maximum

Accuracy 0.674 0.808 0.855 0.85 0.905 0.981

Precision 0.033 0.472 0.615 0.650 0.809 0.957

Recall 0.25 0.631 0.749 0.829 0.899 0.982

F1 0.059 0.557 0.660 0.707 0.830 0.969

Table 1: LLM classification performance across 27 tasks from 11 datasets.

Despite the strong overall performance, nine of the 27 tasks had either precision or recall

below 0.5—and three tasks had both precision and recall below 0.5. Thus, for a full one-third of

tasks, the LLM either missed at least half of the true positive cases, had more false positives than

true positives, or both. As shown in Table 2, the aggregate performance ranged as low as an F1

7

• Abilities at classification are mixed

[Pangakis et al., 2023]

https://arxiv.org/abs/2306.00176

15

• Is language model training sufficient to
acquire models of meaning? 
(Bender and Koller 2020)

• Thought experiment: train LLM on unlimited
code

• LLM risks (Bender et al., 2021)

• Proprietary, dataset transparency, etc.

16

https://aclanthology.org/2020.acl-main.463/
https://dl.acm.org/doi/10.1145/3442188.3445922

17

18

