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• Good luck finishing your progress reports - 
due today!
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Statistical variability in NLP

• How to trust experiment results, given 
many sources of variability?


• How variable are the computational 
algorithms?


• How were the annotations sampled?

• How was the text data sampled?

• How representative is the text sample, 

compared to the greater population of 
possible texts?

3



Text data variability
• Do results generalize to ....


• new domains?

• new authors?

• new documents?

• new sentences?


• (Typically things get worse if anything changes)


• Also of interest:  even if only care about text 
similar to our current one, did we “get lucky” in 
our selection of sentences/documents/etc?

4



Text data variability

• A simpler setting: variability due to a small 
sample size


• What if we resampled the tokens/sentences/
documents from a similar population as our 
current data sample?


• Rest of today: focus on classifier 
accuracy evaluation.


• Is the result you see real, or due to chance?
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Null hypothesis tests

• Core idea: compare your observed result to 
what you'd observe, to what you'd expect if 
results were "random" in some way


• formally, the null hypothesis
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• Example #1: are your predictions better than 
chance?
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• Example #2: is the diff. in two classifiers' 
accuracies better than chance?



Null hypothesis tests
• Must define a null hypothesis you wish to 

disprove

• H0 = the "null hypothesis".  Observations were 

generated in an uninteresting way,  
"due to chance"


• p-value:  probability you could see a result at 
least as extreme as what you have, if H0 was true

• pval = P( T(obs) > T(gendata) | gendata ~ H0)


• If you can't beat the null hypothesis, take your 
results with a grain of salt!
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Null hypothesis test
• pvalue = Probability of a result as least as extreme, if 

the null hypothesis was active

• Example: paired testing of classifiers. Two equivalent 

methods:

• 1. Randomized simulation

• 2. Exact binomial test (R: binom.test)
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3.4. EVALUATING CLASSIFIERS 77

Figure 3.5: Probability mass function for the binomial distribution. The pink highlighted
areas represent the cumulative probability for a significance test on an observation of
k = 10 and N = 30.

We write k ⇠ Binom(✓, N) to indicate that k is drawn from a binomial distribution, with
parameter N indicating the number of random “draws”, and ✓ indicating the probability
of “success” on each draw. The probability mass function (PMF) of the binomial distri-
bution is,

pBinom(k; N, ✓) =

✓
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k
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with ✓
k representing the probability of the k successes, (1 � ✓)

N�k representing the prob-
ability of the N � k unsuccessful draws. The expression
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coefficient, representing the number of possible orderings of events; this ensures that the
distribution sums to one over all k 2 {0, 1, 2, . . . , N}.

Under the null hypothesis, ✓ =
1
2 : when the classifiers disagree, they are each equally

likely to be right. Now suppose that among N disagreements, c1 is correct only k <
N

2 times. The probability of c1 being correct k or fewer times is the one-tailed p-value,
because it is computed from the area under the binomial probability mass function from
0 to k, as shown in the left tail of Figure 3.5. This cumulative probability is computed as
a sum over all values i  k,

Pr
Binom

✓
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(i)
1 )  k; N, ✓ =

1

2

◆
=

kX

i=0

pBinom

✓
i; N, ✓ =

1

2

◆
. [3.10]

The one-tailed p-value applies only to the asymmetric null hypothesis that c1 is at least
as accurate as c2. To test the two-tailed null hypothesis that c1 and c2 are equally accu-
rate, we would take the sum of one-tailed p-values, where the second term is computed
from the right tail of Figure 3.5. The binomial distribution is symmetric, so this can be
computed by simply doubling the one-tailed p-value.

(c) Jacob Eisenstein 2018. Work in progress.

3.4. EVALUATING CLASSIFIERS 77

Figure 3.5: Probability mass function for the binomial distribution. The pink highlighted
areas represent the cumulative probability for a significance test on an observation of
k = 10 and N = 30.

We write k ⇠ Binom(✓, N) to indicate that k is drawn from a binomial distribution, with
parameter N indicating the number of random “draws”, and ✓ indicating the probability
of “success” on each draw. The probability mass function (PMF) of the binomial distri-
bution is,

pBinom(k; N, ✓) =

✓
N

k

◆
✓
k
(1 � ✓)

N�k
, [3.9]

with ✓
k representing the probability of the k successes, (1 � ✓)

N�k representing the prob-
ability of the N � k unsuccessful draws. The expression

�
N

k

�
=

N !
k!(N�k)! is a binomial

coefficient, representing the number of possible orderings of events; this ensures that the
distribution sums to one over all k 2 {0, 1, 2, . . . , N}.

Under the null hypothesis, ✓ =
1
2 : when the classifiers disagree, they are each equally

likely to be right. Now suppose that among N disagreements, c1 is correct only k <
N

2 times. The probability of c1 being correct k or fewer times is the one-tailed p-value,
because it is computed from the area under the binomial probability mass function from
0 to k, as shown in the left tail of Figure 3.5. This cumulative probability is computed as
a sum over all values i  k,

Pr
Binom

✓
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(i)
1 )  k; N, ✓ =

1

2

◆
=

kX

i=0

pBinom

✓
i; N, ✓ =

1

2

◆
. [3.10]

The one-tailed p-value applies only to the asymmetric null hypothesis that c1 is at least
as accurate as c2. To test the two-tailed null hypothesis that c1 and c2 are equally accu-
rate, we would take the sum of one-tailed p-values, where the second term is computed
from the right tail of Figure 3.5. The binomial distribution is symmetric, so this can be
computed by simply doubling the one-tailed p-value.

(c) Jacob Eisenstein 2018. Work in progress.



Statistical tests

• Two types of information

• p-values <=> null hypothesis test

• confidence intervals


• Simulation-based testing

• 1. Randomized null hypothesis simulation

• 2. Bootstrapped confidence intervals


• Closed-form tests

• t-tests, exact binomial test, chi-square 

tests....
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Bootstrapping
• Excellent, flexible method to infer confidence intervals

11

-20 -10 0 10

0
1

2
3

-20 -10 0 10

0
1

2
3

-20 -10 0 10

0
1

2
3

-20 -10 0 10

0
1

2
3

[-26 -19  -9  -5  -4
  -2   4   6   9  17]

Observed Dataset: xUnknown:
True population

T(pop) = 0 T(x) = -2.9

Sample 
(theoretically)

Bootstrap samples x(b)
(each size N, sampled with replacement)

T(x(3)) = -1.5

-40 -20 0 20 40

0.
0

0.
2

0.
4

i

dn
or
m
(i/
10
)

[-26  -9  -5  -5  -5  
  -4   4   9   9  17]

[-26 -26 -26 -19  -9  
  -5  -2  -2   4   6]

T(x(2)) = -10.5

[-19 -19  -9  -5  -4  
  -4  -2  -2   6  17]

T(x(1)) = -4.1

Res
am

ple

Bootstrap distribution of T(b)

Should express uncertainty
about estimate of true T(pop)

-20 -10 0 10

0
20
0

60
0

10
00

95% confidence 
interval



Paired testing
• Bootstrap sampling implicitly does a "paired test"
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• Statistical significance testing may be 
necessary, but never sufficient, for a 
meaningful result!


• Statistical significance  vs.

• Substantive significance
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