Statistical uncertainty in NLP

CS 485, Fall 2023
Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485 f23/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

- Good luck finishing your progress reports due today!

Statistical variability in NLP

- How to trust experiment results, given many sources of variability?
- How variable are the computational algorithms?
- How were the annotations sampled?
- How was the text data sampled?
- How representative is the text sample, compared to the greater population of possible texts?

Text data variability

- Do results generalize to
- new domains?
- new authors?
- new documents?
- new sentences?
- (Typically things get worse if anything changes)
- Also of interest: even if only care about text similar to our current one, did we "get lucky" in our selection of sentences/documents/etc?

Text data variability

- A simpler setting: variability due to a small sample size
- What if we resampled the tokens/sentences/ documents from a similar population as our current data sample?
- Rest of today: focus on classifier accuracy evaluation.
- Is the result you see real, or due to chance?

Null hypothesis tests

- Core idea: compare your observed result to what you'd observe, to what you'd expect if results were "random" in some way
- formally, the null hypothesis
- Example \#1: are your predictions better than chance?

Rocky the Octopus predicts Super Bowl 46 winner
11,600 views • Jan 27, 2012
凸 22 DISLIKE \Rightarrow SHARE $\equiv+$ SAVE

- Example \#2: is the diff. in two classifiers' accuracies better than chance?

Null hypothesis tests

- Must define a null hypothesis you wish to disprove
- $\mathrm{HO}=$ the "null hypothesis". Observations were generated in an uninteresting way, "due to chance"
- p-value: probability you could see a result at least as extreme as what you have, if H0 was true
- pval $=P(T(o b s)>T($ gendata $) \mid$ gendata $\sim H O)$
- If you can't beat the null hypothesis, take your results with a grain of salt!

Null hypothesis test

- \quad pvalue $=$ Probability of a result as least as extreme, if the null hypothesis was active
- Example: paired testing of classifiers. Two equivalent methods:
- 1. Randomized simulation
- 2. Exact binomial test (R: binom.test)

$\mathrm{p}_{\text {Binom }}(k ; N, \theta)=\binom{N}{k} \theta^{k}(1-\theta)^{N-k}$

Statistical tests

- Two types of information
- p-values <=> null hypothesis test
- confidence intervals
- Simulation-based testing
- 1. Randomized null hypothesis simulation
- 2. Bootstrapped confidence intervals
- Closed-form tests
- t-tests, exact binomial test, chi-square tests....

Bootstrapping

- Excellent, flexible method to infer confidence intervals

Paired testing

- Bootstrap sampling implicitly does a "paired test"
- Statistical significance testing may be necessary, but never sufficient, for a meaningful result!
- Statistical significance vs.
- Substantive significance

