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Language modeling as representation learning

• Train a skip-gram LM ->  
get useful word embeddings 

• Today: train a (funny) LM -> 
get useful token embeddings
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Why contextual embeddings?
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BERT
• “Bidirectional… Transformers” 

• Transformer: a specific neural net architecture for token sequences, 
that uses attention and token embeddings 

• Bidirectional: The core model is a masked LM, predicting missing 
word(s) from rest of words in sentence 

• Usage 
• 1. "Pretrain": train it as a masked language model on a large corpus 

• It learns to infer useful contextual word embeddings per token 
• 2. "Fine-tune": apply it for your desired supervised learning task.  

(Further update the parameters to do well at your task.) 
• BERT (+ variants) are incredibly successful 

• ... and it learns useful linguistic structure by itself! 
Rogers et al., 2020 

• ... and there are easy to use implementations: 
https://huggingface.co/docs/transformers/index 
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Fig. 1. A hearer must reconstruct that the store is in a relative clause modi-
fying the chef to know that it is the chef who is out of food rather than the
linearly closer store.

neural network models, which construct rich, word-token spe-
cific deep contextual representations of human language as
numeric vectors (17, 18). In this paper, we examine how, at
this larger scale, there is a dramatic increase in what is mod-
eled by such networks. The simple task of word prediction is
a highly effective self-supervision signal: Neural networks can
and do improve on this task by inducing their own representa-
tions of sentence structure which capture many of the notions
of linguistics, including word classes (parts of speech), syntactic
structure (grammatical relations or dependencies), and coref-
erence (which mentions of an entity refer to the same entity,
such as, e.g., when “she” refers back to “Rachel”). We examine
learned attention structure in models and develop simple probes
to show that these models know about each of these types of
linguistic information. Indeed, the learned encoding of a sen-
tence to a large extent includes the information found in the
parse tree structures of sentences that have been proposed by
linguists.

This is a startling and intriguing result. Traditionally much
of the emphasis in NLP has been on using labels for part of
speech, syntax, etc., as an aid in other downstream tasks. This
result suggests that large-scale hand construction of syntactically
labeled training data may no longer be necessary for many tasks.
Despite its simple nature, the generality of word prediction,
as a task that benefits from syntactic, semantic, and discourse
information, leads to it being a very powerful multidimensional
supervision signal.

While the work presented here is interesting food for thought
about the starting point and process of human language acqui-
sition, we make no attempt to model human learning. These
models are operating in a quite different environment from that
of children, with exposure to much more linguistic input but
no real-world environment to aid learning. Nevertheless, this
work bears on the logical problem of language acquisition (19).
Importantly, it shows successful language structure learning from
positive evidence alone.

Bidirectional Encoder Representations from Transformers: A
Self-Supervised Artificial Neural Network
Current state-of-the-art NLP systems typically involve a deep
artificial neural network that was trained on a large corpus of
text using self-supervision. As an example, we describe Bidirec-
tional Encoder Representations from Transformers (BERT), a
recently proposed Transformer model and training procedure
that has gained prominence by dominating multiple key NLP
benchmarks (18, 20).

Fig. 2. The next word prediction (language-modeling) task (a) and the
cloze task (b).

Fig. 3. A high-level illustration of BERT. Words in the input sequence are
randomly masked out and then all words are embedded as vectors in Rd .
A Transformer network applies multiple layers of multiheaded attention
to the representations. The final representations are used to predict the
identities of the masked-out input words.

The self-supervision task used to train BERT is the masked
language-modeling or cloze task, where one is given a text in
which some of the original words have been replaced with a
special mask symbol. The goal is to predict, for each masked
position, the original word that appeared in the text (Fig. 3).
To perform well on this task, the model needs to leverage the
surrounding context to infer what that word could be.

BERT is a Transformer model (21), a neural network archi-
tecture, without any recurrent connections (22), which takes a
sequence of words (or other symbols) as input and produces
a contextualized vector representation of each word as its out-
put (Fig. 3). It contains many millions of trainable parameters
in a number of layers, typically requiring massive amounts of
data and computation to train. This makes Transformers dif-
ficult to train, but also highly expressive models that can out-
perform other contemporary neural networks when properly
optimized.

The key mechanism by which Transformers contextualize rep-
resentations is multiheaded attention (see Fig. 5). Attention
(23) dynamically assigns a weight to every pair of words in the
sequence, indicating how much the model should “pay attention
to” the first word when computing the representation of the sec-
ond one. Transformers use multiple attention heads in parallel,
where each head can potentially capture a completely differ-
ent word–word relation. Transformers aggregate the information
from each head to produce a single output vector representation
for each word in the sequence. We provide more mathematical
detail below.

Fig. 4. An example where implicitly modeling syntactic structure may
assist in predicting the missing word and improve language-modeling
performance.

Manning et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30047
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Attention for Masked LM
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Multi-head self-attention + feed forward

Multi-head self-attention + feed forward
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Multi-head self-attention + feed forward

Multi-head self-attention + feed forward
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Layer 1
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Multi-head self-attention [Vaswani et al. 2017 
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residual 

connections



Positional encoding



Hacks to get it to work:





I went to class and took ___

0      0         1        0         0
cats TV notes took sofa

0.025   0.025        0.9     0.025     0.025
with label smoothing



Byte pair encoding (BPE)
• Deal with rare words / large vocabulary by using subword tokenization 

• Initial analysis step iteratively merges frequent character n-grams to form the 
vocabulary 

• Confusing name comes from data compression literature - not actually about bytes for 
us

27 Sennrich et al., ACL 2016



What does BERT learn?

28 [Rogers et al., 2020]

truncated sentences, removed subjects and objects

(Ettinger, 2019). This could mean that either

BERT’s syntactic knowledge is incomplete, or

it does not need to rely on it for solving its

tasks. The latter seems more likely, since Glavaš

and Vulić (2020) report that an intermediate

fine-tuning step with supervised parsing does

not make much difference for downstream task

performance.

3.2 Semantic Knowledge

To date, more studies have been devoted to

BERT’s knowledge of syntactic rather than se-

mantic phenomena. However, we do have evi-

dence from an MLM probing study that BERT

has some knowledge of semantic roles (Ettinger,

2019). BERT even displays some preference for

the incorrect fillers for semantic roles that are

semantically related to the correct ones, as op-

posed to those that are unrelated (e.g., ‘‘to tip a

chef’’ is better than ‘‘to tip a robin’’, but worse

than ‘‘to tip a waiter’’).

Tenney et al. (2019b) showed that BERT en-

codes information about entity types, relations,

semantic roles, and proto-roles, since this infor-

mation can be detected with probing classifiers.

BERT struggles with representations of num-

bers. Addition and number decoding tasks showed

that BERT does not form good representations for

floating point numbers and fails to generalize away

from the training data (Wallace et al., 2019b). A

part of the problem is BERT’s wordpiece tokeniza-

tion, since numbers of similar values can be di-

vided up into substantially different word chunks.

Out-of-the-box BERT is surprisingly brittle

to named entity replacements: For example,

replacing names in the coreference task changes

85% of predictions (Balasubramanian et al., 2020).

This suggests that the model does not actually

form a generic idea of named entities, although

its F1 scores on NER probing tasks are high

(Tenney et al., 2019a). Broscheit (2019) finds that

fine-tuning BERT on Wikipedia entity linking

‘‘teaches’’ it additional entity knowledge, which

would suggest that it did not absorb all the

relevant entity information during pre-training on

Wikipedia.

are not well-formed from the point of view of a human reader

(Wallace et al., 2019a).

Figure 2: BERT world knowledge (Petroni et al., 2019).

3.3 World Knowledge

The bulk of evidence about commonsense know-

ledge captured in BERT comes from practitioners

using it to extract such knowledge. One direct

probing study of BERT reports that BERT strug-

gles with pragmatic inference and role-based

event knowledge (Ettinger, 2019). BERT also

struggles with abstract attributes of objects, as

well as visual and perceptual properties that are

likely to be assumed rather than mentioned (Da

and Kasai, 2019).

The MLM component of BERT is easy to adapt

for knowledge induction by filling in the blanks

(e.g., ‘‘Cats like to chase [ ]’’). Petroni et al.

(2019) showed that, for some relation types, va-

nilla BERT is competitive with methods relying

on knowledge bases (Figure 2), and Roberts et al.

(2020) show the same for open-domain QA using

the T5 model (Raffel et al., 2019). Davison et al.

(2019) suggest that it generalizes better to unseen

data. In order to retrieve BERT’s knowledge, we

need good template sentences, and there is work

on their automatic extraction and augmentation

(Bouraoui et al., 2019; Jiang et al., 2019b).

However, BERT cannot reason based on its

world knowledge. Forbes et al. (2019) show that

BERT can ‘‘guess’’ the affordances and properties

of many objects, but cannot reason about the

relationship between properties and affordances.

For example, it ‘‘knows’’ that people can walk

into houses, and that houses are big, but it cannot

infer that houses are bigger than people. Zhou et al.

(2020) and Richardson and Sabharwal (2019) also

show that the performance drops with the number

of necessary inference steps. Some of BERT’s

world knowledge success comes from learning

stereotypical associations (Poerner et al., 2019),

for example, a person with an Italian-sounding

name is predicted to be Italian, even when it is

incorrect.
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3 What Knowledge Does BERT Have?

A number of studies have looked at the know-

ledge encoded in BERT weights. The popular ap-

proaches include fill-in-the-gap probes of MLM,

analysis of self-attention weights, and probing

classifiers with different BERT representations as

inputs.

3.1 Syntactic Knowledge

Lin et al. (2019) showed that BERT representa-

tions are hierarchical rather than linear, that is,

there is something akin to syntactic tree structure

in addition to the word order information. Tenney

et al. (2019b) and Liu et al. (2019a) also showed

that BERT embeddings encode information

about parts of speech, syntactic chunks, and

roles. Enough syntactic information seems to be

captured in the token embeddings themselves to

recover syntactic trees (Vilares et al., 2020; Kim

et al., 2020; Rosa and Mareček, 2019), although

probing classifiers could not recover the labels

of distant parent nodes in the syntactic tree (Liu

et al., 2019a). Warstadt and Bowman (2020) report

evidence of hierarchical structure in three out of

four probing tasks.

As far as how syntax is represented, it seems

that syntactic structure is not directly encoded

in self-attention weights. Htut et al. (2019) were

unable to extract full parse trees from BERT

heads even with the gold annotations for the root.

Jawahar et al. (2019) include a brief illustration of

a dependency tree extracted directly from self-

attention weights, but provide no quantitative

evaluation.

However, syntactic information can be recov-

ered from BERT token representations. Hewitt

and Manning (2019) were able to learn transforma-

tion matrices that successfully recovered syntactic

dependencies in PennTreebank data from BERT’s

token embeddings (see also Manning et al., 2020).

Jawahar et al. (2019) experimented with transfor-

mations of the [CLS] token using Tensor Product

Decomposition Networks (McCoy et al., 2019a),

concluding that dependency trees are the best

match among five decomposition schemes (although

the reported MSE differences are very small).

Miaschi and Dell’Orletta (2020) perform a range

of syntactic probing experiments with concate-

nated token representations as input.

Note that all these approaches look for the

evidence of gold-standard linguistic structures,

Figure 1: Parameter-free probe for syntactic know-
ledge: words sharing syntactic subtrees have larger
impact on each other in the MLM prediction (Wu et al.,
2020).

and add some amount of extra knowledge to the

probe. Most recently, Wu et al. (2020) proposed a

parameter-free approach based on measuring the

impact that one word has on predicting another

word within a sequence in the MLM task (Figure 1).

They concluded that BERT ‘‘naturally’’ learns

some syntactic information, although it is not

very similar to linguistic annotated resources.

The fill-in-the-gap probes of MLM showed

that BERT takes subject-predicate agreement

into account when performing the cloze task

(Goldberg, 2019; van Schijndel et al., 2019),

even for meaningless sentences and sentences

with distractor clauses between the subject and

the verb (Goldberg, 2019). A study of negative

polarity items (NPIs) by Warstadt et al. (2019)

showed that BERT is better able to detect the

presence of NPIs (e.g., ‘‘ever’’) and the words

that allow their use (e.g., ‘‘whether’’) than

scope violations.

The above claims of syntactic knowledge are

belied by the evidence that BERT does not

‘‘understand’’ negation and is insensitive to

malformed input. In particular, its predictions

were not altered2 even with shuffled word order,

2See also the recent findings on adversarial triggers, which

get the model to produce a certain output even though they
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Fig. 6. Some BERT attention heads that appear sensitive to linguistic phenomena, despite not being explicitly trained on linguistic annotations. In the
example attention maps, the darkness of a line indicates the size of the attention weight. All attention to/from red words is colored red; these words are
chosen to highlight certain of the attention heads’ behaviors. [CLS] (classification) and [SEP] (separator) are special tokens BERT adds to the input during
preprocessing. Attention heads are numbered by their layer and index in BERT. Reprinted with permission from ref. 59, which is licensed under CC BY 4.0.

The Transformer network (21) uses a flavor of this mechanism
called self-attention, where each input word plays a dual role
as both a query and a selectable item. This is implemented by
passing the vector representation of every word xi through three
different linear transformations, resulting in query qi , key ki , and
value vi vectors. Each query qj can then attend over all of the
key-value pairs (ki , vi) in the sequence, producing a different
attention distribution ↵j (i.e., ↵j

i denotes the attention weight
toward position i from position j ) and output yj for each word,
as shown in Fig. 5.

Attention has been a highly successful neural network compo-
nent for processing text (31), video (32), image (33), and speech
(34) data. A Transformer network consists of multiple layers with
each layer containing multiple attention heads. Each head com-
putes its own independent attention weights and output vectors;
the output vectors across heads are concatenated together when
producing a layer’s output.

Method: Attention Heads as Simple Classifiers. We quantitatively
study the correspondence between attention heads and linguis-
tic phenomena by observing the behavior of attention heads on
corpora of annotated data. We focus on data where the anno-
tations assign each pair of words (wi ,wj ) a label l(wi ,wj ) that
is 1 if a particular linguistic relationship between words holds
(e.g., wi is wj ’s syntactic head) and is 0 if otherwise. To inter-
pret what an attention head in BERT is computing, we examine
the most-attended-to word at each position. More formally, if
↵(w , h) denotes the attention distribution of head h when BERT
is run over the sequence of words w = [w1, . . . ,wn ], we find the
most-attended-to word wargmaxi↵(w ,h)ji

for each position 1 j 
n . We then evaluate whether the attention head is expressing
a particular linguistic relationship by computing how often the
most-attended-to word is in that relationship with the input word

(i.e., how often the head “pays attention to” linguistically rele-
vant words). If Sl(w)= {j :

Pn
i=1 l(wi ,wj )> 0} is the subset of

the input expressing the annotated relationship, the precision
score for the head is computed as

precision(h)=
1
N

X

w2corpus

X

j2Sl (w)

l(wargmaxi↵(w ,h)ji
,wj ), [3]

where N is the total number of words in the corpus expressing
the relationship. This score can be viewed as evaluating the atten-
tion head as a simple classifier that predicts the presence of the
linguistic relationship of interest.

Experiments. We use the original base-sized uncased BERT
model from Google, which consists of 12 layers each containing
12 attention heads and 768-dimensional hidden vectors. We use
“head hlayeri-hindexi” to denote a particular attention head.

Our first evaluation is on syntactic dependencies, using the
Wall Street Journal (WSJ) portion of the Penn Treebank (4,
35) annotated with Stanford Dependencies (SD) (36) as the cor-
pus. In dependency syntax, typed directed edges connect words,
forming a tree structure describing the sentence’s syntax. In par-
ticular, the tree structure results from each word having exactly

Table 2. Precisions (%) of systems selecting a correct antecedent
for a coreferent mention in the CoNLL-2012 data by mention type

Model All Pronoun Proper Nominal

Nearest 15 23 9 11
Rule based 66 72 73 48
Head 5-4 70 68 76 64

Manning et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30049
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Using BERT

• You get 
• Per-token embeddings 
• Multiple layers at each 
• Embedding for per-sentence “[CLS]” symbol 

• Use as input for tasks.  Two learning 
approaches 

• “Frozen”: use them as input features 
• Fine-tuning: backprop through the actual BERT 

model itself (better)
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Using BERT for classif.
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• Many pretrained BERT or BERT-like models 
are available (especially for English and other 
high-resource languages…) 

• Check out HuggingFaces’ examples 
• https://huggingface.co/transformers/

examples.html
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