Dependency Parsing

CS 485, Fall 2023
Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485 f23/

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

CFG issue

Substitutability is too strong (e.g. "she" as subject vs object)

Figure 11.5: A grammar that allows *she* to take the object position wastes probability mass on ungrammatical sentences.

sushi with NNS CFG issuesticks

Substitutability is too strong (PP attachment ambiguity)

Head rules

- Idea: Every phrase has a head word, that is the "core" or "nucleus" determining its syntactic role
- Head rules: for every nonterminal in tree, choose one of its children to be its "head". This will define head words.
- Every nonterminal type has a different head rule;
 e.g. from Collins (1997):
 - If parent is NP,
 - Search from right-to-left for first child that's NN, NNP, NNPS, NNS, NX, JJR
 - Else: search left-to-right for first child which is NP

Heads in constits.

NP
VP
VP
Vt
NP
the lawyer questioned DT NN
the witness

Lexicalized CFGs

Non-terminal	Direction	Priority
S	right	VP SBAR ADJP UCP NP
VP	left	VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP	right	N* EX \$ CD QP PRP
PP	left	IN TO FW

Table 11.3: A fragment of head percolation rules

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP attachment (lower)

From constituency structure to dependency graphs

Figure 11.1: Dependency grammar is closely linked to lexicalized context free grammars: each lexical head has a dependency path to every other word in the constituent. (This example is based on the lexicalization rules from § 10.5.2, which make the preposition the head of a prepositional phrase. In the more contemporary Universal Dependencies annotations, the head of *with claws* would be *claws*, so there would be an edge *scratch* \rightarrow *claws*.)

Dependencies tend to be less specific than constituent structure

(c) Chomsky adjunction

(b) Two-level (PTB-style)

(d) Dependency representation

Headedness for phrase relations

- Is a given word X the subject of verb Y?
- Is a given phrase X the subject of verb Y?

Universal Dependencies

- Dependency treebanks are available for many different languages
 - https://universaldependencies.org/
- Many open-source dependency parsers (and tagging/POS/morphology) trained on them are also widely available; e.g. Stanza, SpaCy, etc.
 - They typically directly predict dependencies with another parsing algorithm (shift-reduce, not CKY)

Dependency applications

- Dependencies can be used as less sparse alternative to n-grams
 - Sometimes helps, sometimes doesn't
- Dependency relations can be selected for semantic relationships...

Figure 12.8: Google n-grams results for the bigram *write code* and the dependency arc *write* => *code* (and their morphological variants)

 Goldberg & Orwant 2013: historical dependencies from google books (https://books.google.com/ngrams/)

Dependency pattern statistics

4.3.1 IS_A

The IS_A relation covers any nominal or adjectival properties stated to directly pertain to the target entity, represented using the following patterns:⁵

- 1. target $\stackrel{\text{nsubj}}{\longleftrightarrow}$ property_{nom}
- 2. property_{adj} $\xrightarrow{\text{nsubj}}$ target
- 3. target $\stackrel{\text{appos}}{\longleftrightarrow}$ property_{nom}
- 4. target $\xrightarrow{\text{compound}}$ property_{nom}
- 5. target $\xrightarrow{\text{amod}}$ property_{adj}
- 6. target $\stackrel{\text{nsubj}}{\longleftrightarrow}$ property_{nom} $\xrightarrow{\text{amod}}$ property_{adj}
- 7. target $\stackrel{\text{appos}}{\longleftrightarrow}$ property_{nom} $\stackrel{\text{amod}}{\longrightarrow}$ property_{adj}

Relation	Trump-Leaning ($t < -2$)	Biden-Leaning $(t > 2)$
IS_A(fauci, property _{nom})	murderer**, joke**, hack*, fraud*, rat*, flip*, idiot, flop, state, prison, fake, jail	nih**, hero, md, director, president
IS_A(fauci, property _{adj})	fake*, little*, deep, liberal, wrong, corrupt	beloved, optimistic, best
AS_AGENT(fauci, verb)	sweat**, force**, need*, help*, read*, lie*, know*, let*, not_fund*, not_understand*, flip, predict, write, make, stick, hold, prove, want, not_say, admit, not_get, demand, issue, laugh, state, put, spread, pull	speak**, join*, warn*, throw, not_recommend, offer, pro- vide, respond, consider, de- bunk, fail, reveal
AS_PATIENT(fauci, verb)	not_trust***, screw, prosecute, grill, keep to, ar- rest, expose, lock, do to, remove, accord to, look like, mean, blast, read	know*, feature, discredit, threaten, worship, join, insult
HAS_A(fauci, object)	friend*, nih*, family, mind, hand, ex-employee, involvement, fraud, mask	guidance, time
AS_CONJUNCT(fauci, conj.)	gates***, obama**, bill gates*, biden*, brix, cdc, rest, covid, nih, company, government	director, experts

Table 5: TweetIE extractions with at least 20 unique users with a county-level political valence t-statistic outside of [-2, 2]. Results are reported in decreasing absolute value t-statistic. * |t| > 3, ** |t| > 4, *** |t| > 5.

From geo-located tweets, Mar-Dec 2020

Dependency paths

They had previously bought bighorn sheep from Comstock.

The paths extracted from this sentence and their meanings are:

- (a) N:subj: $V \leftarrow buy \rightarrow V$:from:N $\equiv X$ buys something from Y
- (b) N:subj: $V \leftarrow buy \rightarrow V$:obj: $N \equiv X buys Y$
- (c) N:subj:V \leftarrow buy \rightarrow V:obj:N \rightarrow sheep \rightarrow N:nn:N $\equiv X$ buys Y sheep
- (d) N:nn:N \leftarrow sheep \leftarrow N:obj:V \leftarrow buy \rightarrow V:from:N $\equiv X$ sheep is bought from Y
- (e) N:obj:V \leftarrow buy \rightarrow V:from:N $\equiv X$ is bought from Y

An inverse path is also added for each one above.

 Dependency path corresponds to a lexico-syntactic pattern

Distributional similarity

- "You shall know a word by the company it keeps" [Firth, 1957]
- Simple single-word (lexical semantics) exmaple: "duty" vs "responsibility" adj. modification, verbs they're arguments of?
 - duty can be modified by adjectives such as additional, administrative, assigned, assumed, collective, congressional, constitutional, ..., so can responsibility;
 - duty can be the object of verbs such as accept, articulate, assert, assign, assume, attend to, avoid, become, breach, ..., so can responsibility.