
Constituency Parsing (cont'd)

+ PCFGs (if time)

CS 485, Fall 2023 
Applications of Natural Language Processing 
https://people.cs.umass.edu/~brenocon/cs485_f23/

Brendan O'Connor

College of Information and Computer Sciences

University of Massachusetts Amherst

https://people.cs.umass.edu/~brenocon/cs485_f23/

0

 S → NP VP

 NP → NP PP

 VP → V NP

 VP → VP PP

 PP → P NP

NP
 NP → she

 NP → fish

 NP → fork

 NP → chopsticks

 V → eats

 V → fish

 P → with

UMass CS 485 In-class Exercise 10/19/23 Name: ___

Fill in the CYK dynamic programming table to parse the sentence below. In the bottom right corner, draw the two parse trees.

Show the possible nonterminals in each cell. Optional: draw the backpointers too.

Brendan O’Connor and Andrew McCallum, UMass Amherst

she

fish

with

chopsticks

eats

1

2

3

4

5

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

Put together C(1,1)

and C(2,2).

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

Another way.

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

n - 1 ways!

O(G n^3)

G = grammar
constant

For cell [i,j]

 For possible splitpoint k=(i+1)..(j-1):

 For every B in [i,k] and C in [k,j],

 If exists rule A -> B C,

 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]

Probabilistic CFGs

10

• Defines a probabilistic generative process for words in a sentence

• Can parse with a modified form of CKY

• How to learn? Fully supervised if you have a treebank

DR
AF
T

Section 14.1. Probabilistic Context-Free Grammars 3

S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]
S → Aux NP VP [.15] Noun → book [.10] | flight [.30]
S → VP [.05] | meal [.15] | money [.05]
NP → Pronoun [.35] | flights [.40] | dinner [.10]
NP → Proper-Noun [.30] Verb → book [.30] | include [.30]
NP → Det Nominal [.20] | prefer; [.40]
NP → Nominal [.15] Pronoun → I [.40] | she [.05]
Nominal → Noun [.75] | me [.15] | you [.40]
Nominal → Nominal Noun [.20] Proper-Noun → Houston [.60]
Nominal → Nominal PP [.05] | TWA [.40]
VP → Verb [.35] Aux → does [.60] | can [40]
VP → Verb NP [.20] Preposition → from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near [.15]
VP → Verb PP [.15] | through [.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 14.1 A PCFGwhich is a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon of Fig. ?? in Ch. 13. These probabilities were made up for
pedagogical purposes and are not based on a corpus (since any real corpus would have
many more rules, and so the true probabilities of each rule would be much smaller).

or as

P(RHS|LHS)

Thus if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1:

∑
β

P(A→ β) = 1

Fig. 14.1 shows a PCFG: a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon . Note that the probabilities of all of the expansions of each
non-terminal sum to 1. Also note that these probabilities were made up for pedagogical
purposes. In any real grammar there are a great many more rules for each non-terminal
and hence the probabilities of any particular rule would tend to be much smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentences inCONSISTENT

the language equals 1. Certain kinds of recursive rules cause a grammar to be inconsis-
tent by causing infinitely looping derivations for some sentences. For example a rule
S→ S with probability 1 would lead to lost probability mass due to derivations that
never terminate. See Booth and Thompson (1973) for more details on consistent and
inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful prob-
abilities concerning a sentence and its parse tree(s), including the probability of a par-

[J&M textbook]

PCFG as LM

• sample p(w,y) = p(w|y) p(y)

11

N-gram vs PCFG LM

• We also could sample from an n-gram (Markov)
LM.... what differences should we expect?

12

PCFG as LM

• p(w,y) = multiply all the expansion probabilities

13

(P)CFG model, (P)CKY algorithm

• CKY: given CFG and sentence w

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Probabilistic CKY: given PCFG and sentence w

• Most probable parse (“Viterbi parse”) 
 ŷ = argmaxy P(y | w) 

• Likelihood of sentence ("Inside algorithm") 
 P(w) = 𝚺y P(w | y) P(y)

14

• a PCFG with Penn Treebank's nonterminals encodes overly strong conditional
independence assumptions - big problems for both generation and parsing

• a bunch of tricks improve treebank-trained PCFGs to get better parsing
performance

• ~80% F1: "Treebank grammar" (PCFG directly trained on PTB)

• ~90% F1: PCFG with clever non-terminal splitting

• ~95% F1: state of the art (not PCFG)

15

Better PCFG grammars
• Nonterminal splitting: because substitutability is too strong

(e.g. “she” as subject vs object)

16

204 CHAPTER 11. CFG PARSING

S

VP

NP

NN

bear

DT

the

VBD

heard

NP

PRP

She

S

VP

NP

PRP

she

VBD

heard

NP

NN

bear

DT

The

Figure 11.5: A grammar that allows she to take the object position wastes probability mass
on ungrammatical sentences.

S

VP

NP

PP

NP

NP

NNP

Italy

CC

and

NP

NNP

France

P

from

NN

wine

V

likes

NP

PRP

she

S

VP

NP

NP

NNP

Italy

CC

and

NP

PP

NP

NNP

France

P

from

NN

wine

V

likes

NP

PRP

she

Figure 11.6: The left parse is preferable because of the conjunction of phrases headed by
France and Italy.

attachment. More fine-grained NP and VP categories might allow us to make attachment
decisions more accurately.

Semantic preferences In addition to grammatical constraints such as case marking, we
have semantic preferences: for example, that conjoined entities should be similar. In Fig-
ure 11.6, you probably prefer the left parse, which conjoins France and Italy, rather than the
right parse, which conjoins wine and Italy. But it is impossible for a PCFG to distinguish
these parses! They contain exactly the same productions, so the resulting probabilities
will be the same, no matter how you define the probabilities of each production.

Subsumption There are several choices for annotating PP attachment

(c) Jacob Eisenstein 2014-2017. Work in progress.

[From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Better PCFG grammars

• Parent annotation

17

11.5. IMPROVING PCFG PARSING 207

S

VP

NP

NN

bear

DT

the

V

heard

NP

she

! S

VP-S

NP-VP

NN-NP

bear

DT-NP

the

VP-VP

heard

NP-S

she

Figure 11.8: Parent annotation in a CFG derivation

Parent annotation weakens the PCFG independence assumptions. This could help
accuracy by making more fine-grained distinctions, which better capture real lingusitic
phenomena. But it could also hurt accuracy, because each production probability must be
estimated from less data.

In practice, the transformations proposed by Johnson (1998) do improve performance
on PTB parsing:

• Standard PCFG: 72% F-measure, 14,962 rules

• Parent-annotated PCFG with flattening: 80% F-measure, 22,773 rules [todo: double
check that flattening is included too]

• In principle, parent annotation could have increased the grammar size much more
dramatically, but many possible productions never occur, or are subsumed.

Lexicalization

Recall that some of the problems with PCFG parsing that were suggested above have to
do with meaning — for example, preferring to coordinate constituents that are of the same
type, like cats and dogs rather than cats and houses. A simple way to capture semantics is
through the words themselves: we can annotate each non-terminal with head word of the
phrase.

Head words are deterministically assigned according to a set of rules, sometimes
called head percolation rules. In many cases, these rules are straightforward: the head of
a NP ! DT N production is the noun, the head of a S ! NP VP production is the head
of the VP, etc. But as always, there are a lot of special cases.

A fragment of the head percolation rules used in many parsing systems are found in
Table 11.3.4

The meaning of these rules is that to find the head of an S constituent, we first look for
the rightmost VP child; if we don’t find one, we look for the rightmost SBAR child, and
so on down the list. Verb phrases are headed by left verbs (the head of can walk home is

4From http://www.cs.columbia.edu/˜mcollins/papers/heads

(c) Jacob Eisenstein 2014-2017. Work in progress.

[From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

• Linguistically designed state splits

18

11.6. MODERN CONSTITUENT PARSING 217

Figure 11.12: Performance for various Markovization levels (Klein and Manning, 2003).

Figure 11.13 shows an example of an error that is corrected through the introduction
of a new NP-TMP subcategory for temporal noun phrases.

Figure 11.13: State-splitting creates a new non-terminal called NP-TMP, for temporal noun
phrases. This corrects the PCFG parsing error in (a), resulting in the correct parse in (b).

Automated state-splitting Klein and Manning (2003) use linguistic insight and error
analysis to manually split PTB non-terminals so as to make parsing easier. Later work
by Dan Klein and his students automated this state-splitting process, by treating the “re-
fined” non-terminals as latent variables. For example, we might split the noun phrase

(c) Jacob Eisenstein 2014-2017. Work in progress.

Better PCFG grammars

[From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

• Lexicalization: encode semantic preferences

19

208 CHAPTER 11. CFG PARSING

Non-terminal Direction Priority

S right VP SBAR ADJP UCP NP
VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP right N* EX $ CD QP PRP . . .
PP left IN TO FW

Table 11.3: A fragment of head percolation rules

NP(wine)

NP(Italy)

NNS

Italy

CC

and

NP(wine)

PP(from)

NP(France)

NNP

France

IN

from

NP(wine)

NN

wine

NP(wine)

PP(from)

NP(France)

NP(Italy)

NNS

Italy

CC

and

NP(France)

NNP

France

IN

from

NP(wine)

NN

wine

VP(meet)

PP(on)

NP

NN

Monday

P

on

NP(President)

NN

President

DT

the

VB

meet

VP(meet)

NP(President)

PP(of)

NP

NN

Mexico

P

of

NP(President)

NN

President

DT

the

VB

meet

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP
attachment (lower)

walk, since can is tagged MD), noun phrases are headed by the rightmost noun-like non-
terminal (so the head of the red cat is cat), and prepositional phrases are headed by the
preposition (the head of at Georgia Tech is at). Some of these rules are somewhat arbitrary
— there’s no particular reason why the head of cats and dogs should be dogs — but the
point here is just to get some lexical information that can support parsing, not to make
any deep claims about syntax.

Given these rules, we can lexicalize the parse trees for some of our examples, as shown
in Figure 11.9.

• In the upper part of Figure 11.9, we see how lexicalization can help solve coordina-
tion scope ambiguity; if,

P (NP ! NP(France) CC NP(Italy)) > P (NP ! NP(wine) CC NP(Italy)), (11.15)

we should get the right parse.

(c) Jacob Eisenstein 2014-2017. Work in progress.

Better PCFG grammars

[From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

20

• a PCFG with Penn Treebank's nonterminals encodes overly strong
conditional independence assumptions - big problems for both
generation and parsing

• a bunch of tricks improve treebank-trained PCFGs to get better
parsing performance

• ~80% F1: "Treebank grammar" (PCFG directly trained on PTB)

• ~90% F1: PCFG with clever non-terminal splitting

• ~95% F1: state of the art (not PCFG)

• Parsing model accuracy: lots of ambiguity!!

• PCFGs lack lexical information to resolve ambiguities 
(sneak in world knowledge?)

• PCFGs that are successful parsers sneak in lexical
information into the non-terminals ... but there are limits
how much you can do

• Next time: dependency parsing

• Practical guidance

• O(N) left-to-right incremental algorithms are more
practical than CKY

• Look carefully at parser's errors — are they tolerable for
your application?

21

