Constituency Parsing (cont'd)
+ PCFGs (if time)

CS 485, Fall 2023

Applications of Natural Language Processing
https://people.cs.umass.edu/~brenocon/cs485 23/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

https://people.cs.umass.edu/~brenocon/cs485_f23/

UMass CS 485 In-class Exercise 10/19/23 Name:

Fill in the CYK dynamic programming table to parse the sentence below. In the bottom right corner, draw the two parse trees.
Show the possible nonterminals in each cell. Optional: draw the backpointers too.

S — NP VP NP — she

0 NP — NP PP NP — fish

NP VP — V NP NP — fork
VP — VP PP NP — chopsticks

she PP — P NP V — eats

V — fish

1 P — with

eats
2
fish
3
with
4
chopsticks

5

Brendan O’Connor and Andrew McCallum, UMass Amherst

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [ij] Computational

Complexity ?

—
SRER
PPN

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

Complexity ?
How do we fill in C(1,2)7? C<>C

SEARO
0505058
6564

1 2 3 L

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [ij] Computational

Complexity ?

How do we fill in C(12)?><><<i<><>
S
sd00000

[Example from Noah Smith]

1 2 3

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [ij] Computational

Complexity ?
How do we fill in C(1,3)7? <>

)

One way ... <><><>
QIO Y
V0V
s3s000s

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational
Complexity ?

How do we fill in C(1,3)7? C
One way ...
Another way. <>

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [ij] Computational

How do we fillin C(1.1)? <>O<> Complexity ?
S8
222222

1 2 3

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational
Complexity ?

How do we fill in C(1,n)?

O(G n"3)

n -1 ways!

G = grammar
constant

[Example from Noah Smith]

Probabilistic CFGs

S — NPVP

S — Aux NP VP

S — VP

NP — Pronoun

NP — Proper-Noun

NP — Det Nominal

NP — Nominal

Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP

VP — Verb

VP — Verb NP

VP — Verb NP PP
VP — Verb PP

VP — Verb NP NP
VP — VP PP

PP — Preposition NP

:.15:
.05
.35
.30
.20
.15
.75
.20
.05
.35
.20
.10
.15
.05
.15]
1.0]

Det — that |.10] | a[.30] | the |.60]
Noun — book |.10] | flight [.30]

meal [.15] | money [.05]
flights [40] | dinner |.10]

Verb — book

Pronoun — 1

.30

pre fer
.40

include
[.40]

| TWA [.40]
Aux — does |.60] | can [40]

Preposition — from [.30] | to [.30]
| on [.20] | near [.15]

| through |.05]

.40] | she .05
| me [.15] | you [.40]
Proper-Noun — Houston |.60)]

30]

® Defines a probabilistic generative process for words in a sentence
® (Can parse with a modified form of CKY
® How to learn? Fully supervised if you have a treebank

10

[J&M textbook]

PCFG as LM

® sample p(wy) = p(wl|y) p(y)

N-gram vs PCFG LM

® We also could sample from an n-gram (Markov)
LM.... what differences should we expect!

PCFG as LM

® p(w,y) = multiply all the expansion probabilities

(P)CFG model, (P)CKY algorithm

® CKY:given CFG and sentence w
® Does there exist at least one parse!?
® Enumerate parses (backpointers)

® Probabilistic CKY: given PCFG and sentence w
® Most probable parse (“Viterbi parse™)

aN

Yy = argmaxy P(y | w)

® Likelihood of sentence ("Inside algorithm")
P(w) = Zy P(w [y) P(y)

® a PCFG with Penn Treebank's nonterminals encodes overly strong conditional
independence assumptions - big problems for both generation and parsing

® a bunch of tricks improve treebank-trained PCFGs to get better parsing
performance

e ~80% Fl: "Treebank grammar" (PCFG directly trained on PTB)
® ~90% Fl: PCFG with clever non-terminal splitting
® ~95% Fl: state of the art (not PCFG)

Better PCFG grammars

® Nonterminal splitting: because substitutability is too strong
(e.g.”she” as subject vs object)

S S
/\ /\
NP VP NP VP
| — — T~ —
PRP VBD NP DT NN VBD NP
| | — | | | |
She heard DT NN The bear heard PRP
| | |
the bear she

Figure 11.5: A grammar that allows she to take the object position wastes probability mass
on ungrammatical sentences.

16 [From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Better PCFG grammars

® Parent annotation

S N S
/\ /\
NP VP NP-S VP-S
I — I _—
she V NP she VP-VP NP-VP
I — T~ I —
heard DT NN heard DT-NP NN-NP
I I I I
the bear the bear

Figure 11.8: Parent annotation in a CFG derivation

17 [From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Better PCFG grammars

® |inguistically designed state splits

VIS VP'S

.,_.--"'_H_H""-l-____ _'_,_.—'—'_'_'_'_'__I__'_‘—\—h._l_

TO VEVP TO VP VP

I — e | ————

to VB NEVF fe VB NP VP NP-EIR VP

| . _,..x"'"”""“"--._._ | T T
appear NF'NF PF'NF appear NPTNP FP"MP 11 NNTTME

CD NNS IN NFFF CD NNS IN NPPP lag night
| | | Il e | | | |

three tmes on NNP IT NN three fimes on NNP

o |
CNN last night CNN

(a) (b)

Figure 11.13: State-splitting creates a new non-terminal called NP-TMP, for temporal noun
phrases. This corrects the PCFG parsing error in (a), resulting in the correct parse in (b).

18 [From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Better PCFG grammars

® | exicalization: encode semantic preferences

Non-terminal Direction Priority

S right VP SBAR ADJP UCP NP

VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP right N*EX$CD QP PRP ...

PP left IN TO FW

Table 11.3: A fragment of head percolation rules

NP(wine) NP (wine)
NP (wine) CC NP(Italy) NP (wine) PP (from)
- | [[B
NP (wine) PP(from) and NNS NN IN NP (France)
[— | | | -
NN IN NP(France) Italy wine from NP(France) CC NP(Italy)
| | [[| |
wine from NNP NNP and NNS
| | |
France France Italy
VP (meet) VP (meet)
- -
VB NP(President) PP (on) VB NP (President)
| —_— — |
meet DT NN p NP meet NP (President) PP(of)
the President on NN DT NN P NP
| | | | |
Monday the President of NN

I
Mexico

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP
attachment (lower)

19 [From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

a PCFG with Penn Treebank's nonterminals encodes overly strong
conditional independence assumptions - big problems for both
generation and parsing

a bunch of tricks improve treebank-trained PCFGs to get better
parsing performance

~80% F
~90% F
~95% F

: "Treebank grammar"” (PCFG directly trained on PTB)
: PCFG with clever non-terminal splitting
: state of the art (not PCFG)

20

® Parsing model accuracy: lots of ambiguity!!

® PCFGs lack lexical information to resolve ambiguities
(sneak in world knowledge?)

® PCFGs that are successful parsers sneak in lexical
information into the non-terminals ... but there are limits
how much you can do

® Next time: dependency parsing

® Practical guidance

® O(N) left-to-right incremental algorithms are more
practical than CKY

® Look carefully at parser's errors — are they tolerable for
your application?

21

