Constituency Parsing (cont'd) + PCFGs (if time)

CS 485, Fall 2023 Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485_f23/

> Brendan O'Connor College of Information and Computer Sciences University of Massachusetts Amherst

Name: _____

Fill in the CYK dynamic programming table to parse the sentence below. In the bottom right corner, draw the two parse trees. Show the possible nonterminals in each cell. Optional: draw the backpointers too.

Probabilistic CFGs

- $S \rightarrow NP VP$ [.80] $Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$ Noun \rightarrow book [.10] | flight [.30] [.15] $S \rightarrow Aux NP VP$ *meal* [.15] | *money* [.05] $S \rightarrow VP$ [.05] *flights* [.40] | *dinner* [.10] [.35] $NP \rightarrow Pronoun$ $Verb \rightarrow book [.30] \mid include [.30]$ $NP \rightarrow Proper-Noun$ [.30] $NP \rightarrow Det Nominal$ [.20] *prefer*; [.40] *Pronoun* $\rightarrow I[.40]$ *she* [.05] $NP \rightarrow Nominal$ [.15] [.75] *me* [.15] | *you* [.40] *Nominal* \rightarrow *Noun* Nominal \rightarrow Nominal Noun [.20] *Proper-Noun* \rightarrow *Houston* [.60] [.05] *TWA* [.40] Nominal \rightarrow Nominal PP $Aux \rightarrow does [.60] \mid can [40]$ $VP \rightarrow Verb$ [.35] *Preposition* \rightarrow *from* [.30] | *to* [.30] $VP \rightarrow Verb NP$ [.20] $VP \rightarrow Verb NP PP$ [.10] on [.20] | near [.15] $VP \rightarrow Verb PP$ [.15] through [.05] $VP \rightarrow Verb NP NP$ [.05] $VP \rightarrow VP PP$ [.15] $PP \rightarrow Preposition NP$ [1.0]
- Defines a probabilistic generative process for words in a sentence
 - Can parse with a modified form of CKY
- How to learn? Fully supervised if you have a treebank

PCFG as LM

• sample p(w,y) = p(w|y) p(y)

N-gram vs PCFG LM

 We also could sample from an n-gram (Markov) LM.... what differences should we expect?

PCFG as LM

• p(w,y) = multiply all the expansion probabilities

(P)CFG model, (P)CKY algorithm

- CKY: given CFG and sentence w
 - Does there exist at least one parse?
 - Enumerate parses (backpointers)
- Probabilistic CKY: given PCFG and sentence w
 - Most probable parse ("Viterbi parse")
 ŷ = argmax_y P(y | w)
 - Likelihood of sentence ("Inside algorithm") $P(w) = \Sigma_y P(w | y) P(y)$

- a PCFG with Penn Treebank's nonterminals encodes overly strong conditional independence assumptions big problems for both generation and parsing
- a bunch of tricks improve treebank-trained PCFGs to get better parsing performance
 - ~80% FI: "Treebank grammar" (PCFG directly trained on PTB)
 - ~90% FI: PCFG with clever non-terminal splitting
 - ~95% FI: state of the art (not PCFG)

Better PCFG grammars

 Nonterminal splitting: because substitutability is too strong (e.g. "she" as subject vs object)

Figure 11.5: A grammar that allows *she* to take the object position wastes probability mass on ungrammatical sentences.

Better PCFG grammars

• Parent annotation

Figure 11.8: Parent annotation in a CFG derivation

[From Eisenstein (2017)]

	12					-	
	$v \leq 3$	Sel. GParents	76.50	78.59	79.07	78.97	78.54
			(4943)	(12374)	(13627)	(19545)	(20123)
Rot	tor	AllOCParents	76 74	7918	79.74	29.07	78.72
DEU			(7797)	(15740)	(16994)	(22886)	(22002)

• Linguistically designed state splits

Figure 11.13: State-splitting creates a new non-terminal called NP-TMP, for temporal noun phrases. This corrects the PCFG parsing error in (a), resulting in the correct parse in (b).

[From Eisenstein (2017)]

Better PCFG grammars

• Lexicalization: encode semantic preferences

Non-terminal	Direction	Priority
S	right	VP SBAR ADJP UCP NP
VP	left	VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP	right	N* EX \$ CD QP PRP
PP	left	IN TO FW

Table 11.3: A fragment of head percolation rules

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP attachment (lower)

[From Eisenstein (2017)]

- a PCFG with Penn Treebank's nonterminals encodes overly strong conditional independence assumptions - big problems for both generation and parsing
- a bunch of tricks improve treebank-trained PCFGs to get better parsing performance
 - ~80% FI: "Treebank grammar" (PCFG directly trained on PTB)
 - ~90% FI: PCFG with clever non-terminal splitting
 - ~95% FI: state of the art (not PCFG)

- Parsing model accuracy: lots of ambiguity!!
 - PCFGs lack lexical information to resolve ambiguities (sneak in world knowledge?)
 - PCFGs that are successful parsers sneak in lexical information into the non-terminals ... but there are limits how much you can do
 - Next time: dependency parsing
- Practical guidance
 - O(N) left-to-right incremental algorithms are more practical than CKY
 - Look carefully at parser's errors are they tolerable for your application?