Constituency Parsing (cont'd)
+ PCFGs (if time)

CS 485, Fall 2023

Applications of Natural Language Processing
https://people.cs.umass.edu/~brenocon/cs485 {23/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

https://people.cs.umass.edu/~brenocon/cs485_f23/

UMass CS 485 In-class Exercise 10/19/23 Name:

Fill in the CYK dynamic programming table to parse the sentence below. In the bottom right corner, draw the two parse trees.

Show the possible nonterminals in each cell. Optional: draw the backpointers too.

£§3 s ~ N
Y
)

= D
7z S
i
| WL
S
- N

Brendan O’Connor and Andrew McCallum, UMass Ambherst /\/

S — NP VP NP — she
NP — NP PP NP — fish
VP — V NP NP — fork
VP — VP PP NP — chopsticks
PP — P NP V — eats
V — fish
P — with

Q&Q\MN&

QTVV @Wj’

&N %) C@Mﬁ

~ For cell [ij] % 0(~)

For possible splitpoint k=(i:\l -(j-1):

" For every B in [i,k] and C in [k,@
If exists rule A -> B C,

add A to cell [ij] Computational

Complexity !

[~

fow dowe il c<12?><>g<><>
S0
osese

¢

3

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [ij] Computational

meisilo e
(2.2) <> <> <> <><>
166000

1 2 3
[Example from Noah Smith]

<
&

<
<
<

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [ij] Computational

Complexity !
How do we fill in C(1,3)? C<>C

CO)
KR
SO0
oSeseee

[Example from Noah Smith]

1 2 3

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [ij] Computational

I:)O:: j:avyve fi" " Z> 3<)7> g%g<><> Complexity ?
0000000
sS00000

¢
IR

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

Complexity !
How do we fill in C(1,3)? <>

—> One way ...
—) Another way.

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [ij] Computational

Complexity !
How do we fill in C(1,n)? C

S

R
S

222222

1 2 3 n

e
S

[Example from Noah Smith]

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists ruie A->B C,

add A to cell [i,j]

Computational

Complexity !
How do we fill in C(1,n)?
O(G n”3)
n -1 ways!

G = grammar
constant

[Example from Noah Smith]

0CS=> P R Jnet=, §
PI’ObablllstICCF/GS/ e >

S — NPVP t&Det—>10Ha[30]
S — A& NP VP (Noun ~ boo AT L30T
S— VP = | meal[15] | money [.05]
P — Pronoun @_ﬁlghi40] | dinner [.10]
< 'NP — Proper-Noun Verb — book [.30] | include [.30]

" NP — Det Nominal
NP — Nomina

| prefer;|[.40]
Pronoun — 11[.40] | she [.05]

'Nominal — Noun 75] | me [.15] | you [.40]
Nominal — Nominal Noun [.20] Proper-Noun — Houston [.60]
Nominal — Nominal PP [.05] | TWA [.40]

VP — Verb [.35] Aux — does [.60] | can [40]

VP — Verb NP [.20] Preposition — from [.30] | to [.30]
VP — Verb NP PP [.10] | on [.20] | near [.15]
VP — Verb PP [.15] | through [.05]

VP — Verb NP NP .05]

VP — VP PP .15]

PP — Preposition NP [1.0]

® Defines a probabilistic generative process for words in a sentence

® Can parse with a modified form of CKY
® How to learn? Fully supervised if you have a treebank
— N
10

[J&M textbook]

PCFG as LM

W Sedie Vv Wy
DA e

° samplei(w,/y) = E(Wl)l)‘r:P(;? Q(\,J} j> =

@,OO-_ a? ﬁ»Zm(N*""
5 S, e
— N? ‘\f‘? N?é&e—#/{,m@
= jé/\\?»y\ P Deavdie @
\
=7 f_{f’? Mo W J />\
2 >/ g
< T /‘\ /\
P ot T Yol U Ao UB A

¢ C /
I w(-—é - et B

N-gram vs PCFG LM %W5/wé/w7>
77

® We also could sample from ann/-gram (Markov)7
4@ what differences should we expect:

PCFG as LM

® p(w,y) = multiply all the expansion probabilities

)@9 F(Wf 7>: S o @praer |y o, /

(P)CFG model, (P)CKY algorithm

® CKY:given CFG and sentence w
— —_— -
® Does there exist at least one parse? - = Jrree (mvrkw"}
® Enumerate parses (backpointers)
® Probabilistic CKY: given PCFG and sentence w
pe= —

® Most probable parse (“Viterbi

parse’’) Vel ??me_/

=rargmax, P e A
ITEZION) G ec) #c4y)

® |ikelihood of sentence
P(w) =2y P(w | y) P(y)

(&

side algorithm")

® a PCFG with Penn Treebank's nonterminals encodes overly strong conditional
independence assumptions - big problems for both generation and parsing

e 2 bunch of tricks improve treebank-trained PCFGs to get better parsing
performance >pan Lt/‘

e ~80% Fl< "Treebank grammar" (PCFG directly trained on PTB)
e ~90% Fl: PCFG with clever non-terminal splitting

® ~95% FI: state of the art (not PCFG)
CE—

\/@? M\f‘[(r

Better PCFG grammars

® Nonterminal splitting: because substitutability is too strong
(e.g.“she” as subject vs object)

S S
/\ /\
NP VP NP VP
| — T —
PRP VBD NP DT NN VBD NP
| | o~ | | | |
She heard DT NN The bear heard PRP
| | |
the bear she

Figure 11.5: A grammar that allows she to take the object position wastes probability mass
on ungrammatical sentences.

16 [From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Better PCFG grammars

® Parent annotation

S N S
/\ ’//’\
NP VP NP-S VP-S
| — | _——
she Vv NP she VP-VP NP-VP
| — | —
heard DT NN heard DT-NP NN-NP
| | | |
the bear the bear

Figure 11.8: Parent annotation in a CFG derivation

17 [From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Better PCFG grammars

® Linguistically designed state splits

VP'S VP'S

/\ /’—’—\

TO VP'VP TO VP'VP

| —_— | —7 T

to VB NP'VP to VB NP"VP NP-JINIR VP

appear NP'NP PP'NP appear NP'NP PP'NP J1 NNTIMB

AN TS N N I I
CD NNS IN NP'PP CD NNS IN NP'PP last night

three times on NNP JJ NN three times on NNP

| | |
N D |
CNN last night CNN

(a) (b)

Figure 11.13: State-splitting creates a new non-terminal called NP-TMP, for temporal noun
phrases. This corrects the PCFG parsing error in (a), resulting in the correct parse in (b).

18 [From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Better PCFG grammars

® | exicalization: encode semantic preferences

Non-terminal Direction Priority

S right VP SBAR ADJP UCP NP

VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP right N*EX$CD QP PRP ...

PP left IN TO FW

Table 11.3: A fragment of head percolation rules

NP(wine) NP(wine)
NP (wine) CC NP(Italy) NP(wine) PP(fom)
—_— | | | -
NP (wine) PP(from) and NNS NN IN NP (France)
| — | | | B
NN IN NP(France) Italy wine from NP(France) CC NP(Italy)
| | |
wine from N 1‘\11” NI‘\IP and NI‘\TS
| | |
France France Italy
VP (meet) VP (meet)
- B
VB NP(President) PP(on) VB NP (President)
\ — — \
meet DT NN P NP meet NP(President) PP (of)
[[| [— —
the President on NN DT NN P NP
[[[[\
Monday the President of NN

|
Mexico

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP
attachment (lower)

19 [From Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

a PCFG with Penn Treebank's nonterminals encodes overly strong
conditional independence assumptions - big problems for both
generation and parsing

a bunch of tricks improve treebank-trained PCFGs to get better
parsing performance

e ~80% Fl: "Treebank grammar" (PCFG directly trained on PTB)
® ~90% Fl: PCFG with clever non-terminal splitting
® ~95% Fl: state of the art (hot PCFG)

20

® Parsing model accuracy: lots of ambiguity!!

® PCFGs lack lexical information to resolve ambiguities
(sneak in world knowledge?)

® PCFGs that are successful parsers sneak in lexical
information into the non-terminals ... but there are limits
how much you can do

® Next time: dependency parsing

® Practical guidance

® O(N) left-to-right incremental algorithms are more
ractical than CKY

Look carefully at parser's errors — are they tolerable for
your application?

21

