Context-Free Grammars

CS 485, Fall 2023
Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485 f23/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Syntax: how do words structurally combine to form sentences and meaning?

- Constituents
- [the big dogs] chase cats
- [colorless green clouds] chase cats
- Dependencies
- The dog \leftarrow chased the cat.
- My dog, who's getting old, chased the cat.

- Idea of a grammar (G): global template for how sentences / utterances / phrases \boldsymbol{w} are formed, via latent syntactic structure \boldsymbol{y}
- Linguistics: what do G and $P(w, y \mid G)$ look like?
- Generation: score with, or sample from, $P(w, y \mid G)$
- Parsing: predict $P(y \mid w, G)$

Syntax for NLP

- If we could predict syntactic structure from raw text (parsing), that could help with...
- Language understanding: meaning formed from structure
- Grammar checking
- Preprocessing: Extract phrases and semantic relationships between words for features, viewing, etc.
- Provides a connection between the theory of generative linguistics and computational modeling of language
- Practically, accurate full sentence parsing is challenging....
- ... but the same challenges exist for all NLP tasks/models/ systems

Is language context-free?

- Regular language: repetition of repeated structures
- e.g. "base noun phrases": (Noun |Adj)* Noun
- subset of the JK pattern
- Context-free: hierarchical recursion
- Center-embedding: classic theoretical argument for CFG vs. regular languages
- (IO.I) The cat is fat.
- (I0.2) The cat that the dog chased is fat.
- (I0.3) *The cat that the dog is fat.
- (10.4) The cat that the dog that the monkey kissed chased is fat.
- (I0.5) *The cat that the dog that the monkey chased is fat.
- Competence vs. Performance

Hierarchical view of syntax

- "a Sentence made of Noun Phrase followed by a Verb Phrase"

Context-free grammars (CFG)

- A CFG is a 4-tuple:
N a set of non-terminals
$\Sigma \quad$ a set of terminals (distinct from N)
$R \quad$ a set of productions, each of the form $A \rightarrow \beta$,
Example: see
handout!
where $A \in N$ and $\beta \in(\Sigma \cup N)^{*}$
S a designated start symbol
- Derivation: a sequence of rewrite steps from S to a string (sequence of terminals, i.e. words)
- Yield: the final string (sentence)
- The parse tree or constituency tree corresponds to the rewrite steps that were used to derive the string
- A CFG is a "boolean language model"
- A grammar (4-tuple) defines to a set of strings it could generate

Context-free grammars (CFG)

R : production rules typically split into two groups

Core grammar: I NT expands to >=| NT

Lexicon: NT expands to a terminal

```
            Noun \(\rightarrow\) flights \(\mid\) breeze \(\mid\) trip \(\mid\) morning \(\mid \ldots\)
            Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
    Adjective \(\rightarrow\) cheapest \(\mid\) non - stop \(\mid\) first \(\mid\) latest
        \(\mid\) other \(\mid\) direct \(\mid \ldots\)
    Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it \(\mid \ldots\)
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
                            \(\mid\) Chicago \(\mid\) United \(\mid\) American \(\mid \ldots\)
Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that \(\mid \ldots\)
Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near \(\mid \ldots\)
Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but \(\mid \ldots\)
```

- Example: derivation from worksheet's grammar

Example

$\left(\mathrm{s}\left(\mathrm{NP}(\mathrm{Prp} S h e)\left(\mathrm{vp}\left(\mathrm{Vbz}_{\text {bz }}\right.\right.\right.\right.$ eats $)$

$$
\left(\mathrm{NP}\left(\mathrm{NN}_{\mathrm{N}} \text { sushi }\right)\right) \quad\left(\mathrm { s } \left(\mathrm { N } _ { \mathrm { NP } } (\mathrm { P } _ { \mathrm { RP } } \text { She }) \left(\mathrm{VP}\left(\mathrm{~V}_{\mathrm{bz}} \text { eats }\right)\right.\right.\right.
$$

$$
(\mathrm{NP}(\mathrm{NP}(\mathrm{NN} \text { sushi }))(\mathrm{Pr}(\mathrm{In} w i t h)(\mathrm{NP}(\mathrm{Nns} \text { chopsticks }))))))
$$

- All useful grammars are ambiguous: multiple derivations with same yield
- [Parse tree representations: Nested parens or non-terminal spans]

Constituents

- Constituent tree/parse is one representation of sentence's syntax. What should be considered a constituent, or constituents of the same category?
- Movement tests
- Substitution tests
- Coordination tests
- Simple grammar of English
- Must balance overgeneration versus undergeneration
- Noun phrases
- NP modification: adjectives, PPs
- Verb phrases
- Coordination
- etc...
- Better coverage: machine-learned grammars, if you have a treebank (labeled dataset)

Is language context-free?

- CFGs nicely explain nesting and agreement (if you stuff grammatical features into the nonterminals)
- The processor has 10 million times fewer transistors on it than todays typical microprocessors, runs much more slowly, and operates at five times the voltage...

```
        S }->NNV
        VP }->\mathrm{ VP3S |VPN3S|...
    VP3S ->VP3S,VP3S, and VP3S |VBZ |VBZ NP | ...
```

- Real sentences have massively ambiguous syntax!

Attachment ambiguity we eat sushi with chopsticks, I shot an elephant in my pajamas.
Modifier scope southern food store
Particle versus preposition The puppy tore up the staircase.
Complement structure The tourists objected to the guide that they couldn't hear.
Coordination scope "I see," said the blind man, as he picked up the hammer and saw.
Multiple gap constructions The chicken is ready to eat
((S
(NP-SBJ (NNP General) (NNP Electric) (NNP Co.))
(VP (VBD said)
(SBAR (-NONE- 0)
(S
(NP-SBJ (PRP it))
(VP (VBD signed)
(NP
(NP (DT a) (NN contract))
(PP (-NONE- *ICH*-3)))
(PP (IN with)
(NP
(NP (DT the) (NNS developers))
(PP (IN of)
(NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project)))))

Penn Treebank
(NP (DT the) (JJ second) (NN phase)) (PP (IN of)
(NP
(NP (DT an) (JJ independent)
(ADJP
(QP (\$ \$) (CD 400) (CD million))
(-NONE- *U*))
(NN power) (NN plant))
(, , ,)
(WHNP-2 (WDT which))
(S
(NP-SBJ-1 (-NONE- *T*-2))
(VP (VBZ is)
(VP (VBG being)
(VP (VBN built)
(NP (-NONE-*-1)) (PP-LOC (IN in)
(NP
(NP (NNP Burrillville))
(, ,)

- stopped here 10/17

