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e Annotations
 (Chance-adjusted calculation
* Practical ethics example in ChatGPT

e [valuation
 Held-out data and overfitting
e (lassification metrics

e Statistical testing (J&M 4.9) - hold off until later in
COUrse



Cohen's Kappa for |1AA

¢ |f some classes predominate, raw agreement rate may be misleading

e |dea: normalize accuracy (agreement) rate such that answering
randomly = 0.

 From psychology / psychometrics / content analysis
e Chance-adjusted agreement:

Po. Observed agreement rate

Pe: expected (by chance) rate

Other chanced-adjusted metrics: Fleiss, Kgppendorff... see reading



When is annotating ethical?



Human labeling is key to ChatGPT
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[Ouyang et al., 2022, Taori et al. 2023]


https://arxiv.org/abs/2203.02155
https://crfm.stanford.edu/2023/03/13/alpaca.html

Table 3: Labeler-collected metadata on the API distribution.

Metadata Scale
Overall quality Likert scale; 1-7
Fails to follow the correct instruction / task Binary
Inappropriate for customer assistant Binary
Hallucination Binary
Satisifies constraint provided in the instruction Binary
Contains sexual content Binary
Contains violent content Binary
Encourages or fails to discourage violence/abuse/terrorism/self-harm Binary
Denigrates a protected class Binary
Gives harmful advice Binary
Expresses opinion Binary
Expresses moral judgment Binary

[Ouyang et al., 2022]


https://arxiv.org/abs/2203.02155

'That Was Torture;' OpenAl Reportedly Relied on
Low-Paid Kenyan Laborers to Sift Through Horrific
Content to Make ChatGPT Palatable

The laborers reportedly looked through graphic accounts of child sexual abuse, murder, torture, suicide, and, incest.
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Held-out data for evaluation

® How well will my classifier work in the future?

® Can we look at classifier accuracy on training data!’



Held-out data for evaluation

® Need to diagnose how much your model is overfitting the training set

® Data splits are key. Some ways to split:
® Training set -vs- test set
® Training set -vs- "validation"/"development” set -vs- test set
® Cross-validation (within training set) -vs- test set
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Cross-validation

® Cross-validation (within training set) -vs- test set
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Regularization in Naive Bayes

12



Regularization in logistic regression

® If "dog" only occurs for class k, what weight will it get?
® Consider MLE training:

® Solution: regularized training for logistic regression
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Regularization tradeoffs

® No regularization <-------------- > Very strong regularization

| 4
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Do | have enough labels?

e [or training, hundreds to thousands of annotations may be needed
for reasonable performance

o Current work: how to usefully make NLP models with <10 or <100
training examples. "Few-shot learning”

e [xact amounts are difficult to know in advance. Can do a learning
curve to estimate it more annotations will be useful.
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Evaluation metrics

e Accuracy =

gold standard labels

e But do we care about
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Precision, recall, F1
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® Mmacro vs. micro F1



