# Text Classification with Naive Bayes 

CS 485, Fall 2023
Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485 f23/

## Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

- I'll hold office hours this week Thursday, 10:30-11:15am
- Erica's office hours held regularly Thursday, 4-5pm
- What's more useful:
- Probability review
- Python demo


## roadmap

- Introduce text classification
- Method \#1: Manually-defined rules and keywords
- Method \#2: Supervised learning
- Naive Bayes model
- next time: logistic regression model


## text classification

- input: some text $\mathbf{x}$ (e.g., sentence, document)
- output: a label $\mathbf{y}$ (from a finite label set)
- goal: learn a mapping function from $\mathbf{x}$ to $\mathbf{y}$


## text classification

- input: some text $\mathbf{x}$ (e.g., sentence, document)
- output: a label $\mathbf{y}$ (from a finite label set)
- goal: learn a mapping function from $\mathbf{x}$ to $\mathbf{y}$
fyi: basically every NLP problem
reduces to learning a mapping function
with various definitions of $\mathbf{x}$ and $\mathbf{y}$ !
sentiment analysistext from reviews (e.g., IMDB)
\{positive, negative\}
topic identification
author identification
spam identification
... many more!


## input $\mathbf{x}$ :

From European Union [info@eu.org](mailto:info@eu.org)§
Subject
Reply to

Please confirm to us that you are the owner of this very email address with your copy of identity card as proof.

YOU EMAIL ID HAS WON $\$ 10,000,000.00$ ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACI OUR EMAIL: CONTACT US NOW VIA EMAIL: NOW TO CLAIM YOUR COMPENSATION
label y: spam or not spam

> we'd like to learn a mapping $f$ such that $$
f(\mathbf{x})=\text { spam }
$$

# $f$ can be hand-designed rules 

- if "won $\$ 10,000,000$ " in $\mathbf{x}, \mathbf{y}=\mathbf{s p a m}$
- if "CS490A Fall 2020" in $\mathbf{x}, \mathbf{y}=$ not spam
what are the drawbacks of this method?


## Demo: Keyword count classifier

- Can manually defined keyword lists be a useful indicator of text sentiment?
- For each category, define set of words
- Predict a category if many of its words are used
- Let's try manually defined keywords!
- go to: http://brenocon.com/sw (also on course schedule webpage)


## $f$ can be learned from data

- given training data (already-labeled $\mathbf{x , y}$ pairs) learn $f$ by maximizing the likelihood of the training data
- this is known as supervised learning


## training data:

$\mathbf{x}$ (email text)
learn how to fly in 2 minutes
send me your bank info
CS585 Gradescope consent poll
click here for trillions of $\$ \$ \$$
... ideally many more examples!
spam
not spam

## heldout data:

> x (email text)
y (spam or not spam)

## CS585 important update

ancient unicorns speaking english!!!
not spam
spam

## training data:

$\mathbf{x}$ (email text)
learn how to fly in 2 minutes
send me your bank info
CS585 Gradescope consent poll
click here for trillions of \$\$
... ideally many more examples!
y (spam or not spam)
spam
spam
not spam
spam
heldout data:
x (email text)
y (spam or not spam)
not spam spam
learn mapping function on training data, measure its accuracy on heldout data

## training data:

$\mathbf{x}$ (email text)
learn how to fly in 2 minutes
send me your bank info
CS585 Gradescope consent poll
click here for trillions of \$\$
... ideally many more examples!
y (spam or not spam)
spam
spam
not spam
spam
heldout data:
x (email text)
y (spam or not spam)
not spam spam
learn mapping function on training data, measure its accuracy on heldout data

- You need knowledge of the categories somewhere in your classifier. Either
- 1. Lexical-level
- 2. Document-level


## probability review

- random variable $X$ takes value $x$ with probability $p(X=x)$; shorthand $p(x)$
- joint probability: $p(X=x, Y=y)$
- conditional probability: $p(X=x \mid Y=y)$

$$
=\frac{p(X=x, Y=y)}{p(Y=y)}
$$

- when does $p(X=x, Y=y)=p(X=x) \cdot p(Y=y)$ ?


## probability of some input text

- goal: assign a probability to a sentence
- sentence: sequence of tokens

$$
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)
$$

- $w_{i} \in V$ where $V$ is the vocabulary (types)
- some constraints:
non-negativity for any $w \in V, p(w) \geq 0$
$\begin{aligned} \begin{array}{c}\text { probability } \\ \text { distribution, } \\ \text { sums to 1 }\end{array}\end{aligned} \quad \sum_{w \in V} p(w)=1$


## toy sentiment example

- vocabulary V : $\{i$, hate, love, the, movie, actor\}
- training data (movie reviews):
- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
labels:
positive
negative
- hate movie
- i hate the actor i love the movie


## bag-of-words representation

i hate the actor i love the movie

## bag-of-words representation

i hate the actor i love the movie

| word | count |
| :---: | :---: |
| i | 2 |
| hate | 1 |
| love | 1 |
| the | 2 |
| movie | 1 |
| actor | 1 |

## bag-of-words representation

i hate the actor i love the movie

| word | count |
| :---: | :---: |
| i | 2 |
| hate | 1 |
| love | 1 |
| the | 2 |
| movie | 1 |
| actor | 1 |

equivalent representation to: actor i i the the love movie hate

## naive Bayes

- represents input text as a bag of words
- assumption: each word is independent of all other words
- Is this a Markov model?
- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- goal: infer probability distribution that generated the labeled data for each label


## which of the below distributions was most likely generated in positive reviews?



## ... back to our reviews

$p$ (i love love love love love the movie)
$=p(\mathrm{i}) \cdot p(\text { love })^{5} \cdot p$ (the) $\cdot p($ movie $)$

$$
=5.95374181 \mathrm{e}-7 \quad=1.4467592 \mathrm{e}-4
$$

$$
1
$$


0.75


## logs to avoid underflow

$p\left(w_{1}\right) \cdot p\left(w_{2}\right) \cdot p(w 3) \ldots \cdot p\left(w_{n}\right)$
can get really small esp. with large $n$
$\log \prod p\left(w_{i}\right)=\sum \log p\left(w_{i}\right)$
$p\left(\right.$ (i) $\cdot p(\text { love })^{5} \cdot p$ (the) $\cdot p$ (movie) $=5.95374181 \mathrm{e}-7$
$\log p$ (i) $+5 \log p$ (love) $+\log p$ (the) $+\log p$ (movie)
$=-14.3340757538$
[This implementation trick is very common in ML and NLP]

## class conditional probabilities

Bayes rule (ex: $x=$ sentence, $y=$ label in \{pos, neg\})

$$
p(y \mid x)=\frac{p(y) \cdot P(x \mid y)}{p(x)}
$$

our predicted label is the one with the highest posterior probability, i.e.,

## class conditional probabilities

Bayes rule (ex: $x=$ sentence, $y=$ label in \{pos, neg\})

$$
\begin{aligned}
& \text { prior likelihood } \\
& \begin{array}{l}
\text { posterior } \\
p(y \mid x)
\end{array}=\frac{p(y) \cdot P(x \mid y)}{p(x)}
\end{aligned}
$$

our predicted label is the one with the highest posterior probability, i.e.,

$$
\hat{y}=\arg \max _{y \in Y} p(y) \cdot P(x \mid y)
$$

## computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
- hate movie
- i hate the actor i love the movie
$p(y)$ lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

| label $y$ | count | $\mathrm{p}(\mathrm{Y}=\mathrm{y})$ | $\log (\mathrm{p}(\mathrm{Y}=\mathrm{y}))$ |
| :---: | :---: | :---: | :---: |
| POS | 3 | 0.43 | -0.84 |
| NEG | 4 | 0.57 | -0.56 |

## computing the likelihood...

$p(X \mid y=P O S)$

| word | count | $\mathrm{p}(\mathrm{wly})$ |
| :---: | :---: | :---: |
| i | 3 | 0.19 |
| hate | 0 | 0.00 |
| love | 7 | 0.44 |
| the | 3 | 0.19 |
| movie | 3 | 0.19 |
| actor | 0 | 0.00 |
| total | $\mathbf{1 6}$ |  |

$p(X \mid y=N E G)$

| word | count | $p(w \mid y)$ |
| :---: | :---: | :---: |
| i | 4 | 0.22 |
| hate | 4 | 0.22 |
| love | 1 | 0.06 |
| the | 4 | 0.22 |
| movie | 3 | 0.17 |
| actor | 2 | 0.11 |
| total | $\mathbf{1 8}$ |  |

$p(X \mid y=P O S)$
$p(X \mid y=N E G)$

| word | count | $p(w \mid y)$ | word | count | $p(w \mid y)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| i | 3 | 0.19 | $i$ | 4 | 0.22 |
| hate | 0 | 0.00 |  | hate | 4 |
| love | 7 | 0.44 |  | 0.22 |  |
| the | 3 | 0.19 | love | 1 | 0.06 |
| movie | 3 | 0.19 | the | 4 | 0.22 |
| actor | 0 | 0.00 | movie | 3 | 0.17 |
| total | $\mathbf{1 6}$ |  | actor | 2 | 0.11 |

new review $X_{\text {new: }}$ : love love the movie

$$
\log p\left(X_{\text {new }} \mid \mathrm{POS}\right)=\sum_{w \in X_{\text {new }}} \log p(w \mid \mathrm{POS})=-4.96
$$

$$
\log p\left(X_{\text {new }} \mid \mathrm{NEG}\right)=-8.91
$$

## posterior probs for $\mathrm{X}_{\text {new }}$

$$
\begin{gathered}
\log p\left(\mathrm{POS} \mid X_{\text {new }}\right) \propto \log P(\mathrm{POS})+\log p\left(X_{\text {new }} \mid \mathrm{POS}\right) \\
\\
=-0.84-4.96=-5.80
\end{gathered}
$$

$\log p\left(\mathrm{NEG} \mid X_{\text {new }}\right) \propto-0.56-8.91=-9.47$

What does NB predict?
what if we see no positive training documents containing the word "awesome"?

## $p($ awesome|POS $)=0$

## Add- $\alpha$ (pseudocount) smoothing

unsmoothed $P\left(w_{i} \mid y\right)=\frac{\operatorname{count}\left(w_{i}, y\right)}{\sum_{w \in V} \operatorname{count}(w, y)}$
$\operatorname{count}\left(w_{i}, y\right)+\alpha$
smoothed $P\left(w_{i} \mid y\right)=\frac{\operatorname{count}\left(w_{i}, y\right)+\alpha}{\sum_{w \in V} \operatorname{count}(w, y)+\alpha|V|}$

## what happens if we do <br> add- $\alpha$ smoothing as $\alpha$ increases?

## Evaluation

- Must assess accuracy on held-out data. Either:
- Train/test split
- Cross validation
- Must tune hyperparameters (e.g. pseudocount) on a "development" or "tuning" set.
- Train/dev/test split
- Significance testing for evaluation metric: given that the test set was small, could results have been due to chance?

