Text Classification with Naive Bayes

CS 485, Fall 2023
Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485 f23/

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

- I'll hold office hours this week Thursday,
 10:30-11:15am
- Erica's office hours held regularly Thursday,
 4-5pm
- What's more useful:
 - Probability review
 - Python demo

roadmap

- Introduce text classification
- Method #1: Manually-defined rules and keywords
- Method #2: Supervised learning
 - Naive Bayes model
 - next time: logistic regression model

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label y (from a finite label set)
- goal: learn a mapping function f from x to y

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label y (from a finite label set)
- goal: learn a mapping function f from x to y

fyi: basically every NLP problem reduces to learning a mapping function with various definitions of **x** and **y**!

problem	X	y
sentiment analysis	text from reviews (e.g., IMDB)	{positive, negative}
topic identification	documents	{sports, news, health,}
author identification	books	{Tolkien, Shakespeare, }
spam identification	emails	{spam, not spam}

... many more!

input x:

```
From European Union <info@eu.org>☆
Subject
Reply to
```

Please confirm to us that you are the owner of this very email address with your copy of identity card as proof.

```
YOU EMAIL ID HAS WON $10,000,000.00 ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACT OUR EMAIL:

CONTACT US NOW VIA EMAIL:

NOW TO CLAIM YOUR COMPENSATION
```

label y: spam or not spam

we'd like to learn a mapping f such that $f(\mathbf{x}) = \mathbf{spam}$

f can be hand-designed rules

- if "won \$10,000,000" in **x**, **y** = **spam**
- if "CS490A Fall 2020" in **x**, **y** = **not spam**

what are the drawbacks of this method?

Demo: Keyword count classifier

- Can manually defined keyword lists be a useful indicator of text sentiment?
 - For each category, define set of words
 - Predict a category if many of its words are used
- Let's try manually defined keywords!
 - go to: http://brenocon.com/sw (also on course schedule webpage)

f can be learned from data

 given training data (already-labeled x,y pairs) learn f by maximizing the likelihood of the training data

this is known as supervised learning

training data:

x (email text)	y (spam or not spam)
learn how to fly in 2 minutes	spam
send me your bank info	spam
CS585 Gradescope consent poll	not spam
click here for trillions of \$\$\$	spam
ideally many more examples!	

heldout data:

x (email text)	y (spam or not spam)	
CS585 important update	not spam	
ancient unicorns speaking english!!!	spam	

training data:

x (email text)	y (spam or not spam)
learn how to fly in 2 minutes	spam
send me your bank info	spam
CS585 Gradescope consent poll	not spam
click here for trillions of \$\$\$	spam
ideally many more examples!	

heldout data:

x (email text)	y (spam or not spam)
CS585 important update	not spam
ancient unicorns speaking english!!!	spam

learn mapping function on training data, measure its accuracy on heldout data

training data:

x (email text)	y (spam or not spam)
learn how to fly in 2 minutes	spam
send me your bank info	spam
CS585 Gradescope consent poll	not spam
click here for trillions of \$\$\$	spam
ideally many more examples!	

heldout data:

x (email text)	y (spam or not spam)	
CS585 important update	not spam	
ancient unicorns speaking english!!!	spam	

learn mapping function on training data, measure its accuracy on heldout data

- You need knowledge of the categories somewhere in your classifier. Either
 - 1. Lexical-level
 - 2. Document-level

probability review

- random variable X takes value x with probability p(X = x); shorthand p(x)
- joint probability: p(X = x, Y = y)
- conditional probability: $p(X = x \mid Y = y)$

$$= \frac{p(X = x, Y = y)}{p(Y = y)}$$

• when does $p(X = x, Y = y) = p(X = x) \cdot p(Y = y)$?

probability of some input text

- goal: assign a probability to a sentence
 - sentence: sequence of *tokens* $p(w_1, w_2, w_3, ..., w_n)$

- $w_i \in V$ where V is the vocabulary (types)
- some constraints:

sums to 1

non-negativity for any
$$w \in V$$
, $p(w) \ge 0$ probability distribution,
$$\sum p(w) = 1$$

 $w \in V$

toy sentiment example

- vocabulary V: {i, hate, love, the, movie, actor}
- training data (movie reviews):
 - i hate the movie
 - i love the movie
 - i hate the actor
 - the movie i love
 - i love love love love the movie
 - hate movie
 - i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

equivalent representation to: actor i i the the love movie hate

naive Bayes

- represents input text as a bag of words
- assumption: each word is independent of all other words
 - Is this a Markov model?
- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- goal: infer probability distribution that generated the labeled data for each label

which of the below distributions was most likely generated in positive reviews?

... back to our reviews

p(i love love love love love the movie)

$$= p(i) \cdot p(love)^5 \cdot p(the) \cdot p(movie)$$

logs to avoid underflow

$$p(w_1) \cdot p(w_2) \cdot p(w_3) \dots \cdot p(w_n)$$
 can get really small esp. with large n

$$\log \prod p(w_i) = \sum \log p(w_i)$$

$$p(i) \cdot p(love)^5 \cdot p(the) \cdot p(movie) = 5.95374181e-7$$

 $log p(i) + 5 log p(love) + log p(the) + log p(movie)$
 $= -14.3340757538$

[This implementation trick is very common in ML and NLP]

class conditional probabilities

Bayes rule (ex: x = sentence, $y = \text{label in } \{\text{pos}, \text{neg}\}$)

$$p(y \mid x) = \frac{p(y) \cdot P(x \mid y)}{p(x)}$$

our predicted label is the one with the highest posterior probability, i.e.,

class conditional probabilities

Bayes rule (ex: x = sentence, $y = \text{label in } \{\text{pos}, \text{neg}\}$)

posterior
$$p(y | x) = \frac{p(y) \cdot P(x | y)}{p(x)}$$

our predicted label is the one with the highest posterior probability, i.e.,

$$\hat{y} = \arg \max_{y \in Y} p(y) \cdot P(x|y)$$
what happened to the denominator???

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love the movie
- hate movie
- i hate the actor i love the movie

p(y) lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

label y	count	p(Y=y)	log(p(Y=y))
POS	3	0.43	-0.84
NEG	4	0.57	-0.56

computing the likelihood...

$$p(X \mid y=POS)$$

$$p(X \mid y=NEG)$$

word	count	p(wly)
i	3	0.19
hate	0	0.00
love	7	0.44
the	3	0.19
movie	3	0.19
actor	0	0.00
total	16	

word	count	p(wly)
i	4	0.22
hate	4	0.22
love	1	0.06
the	4	0.22
movie	3	0.17
actor	2	0.11
total	18	

$$p(X \mid y=POS)$$

$$p(X \mid y=NEG)$$

word	count	p(w I y)	
i	3	0.19	
hate	0	0.00	
love	7	0.44	
the	3	0.19	
movie	3	0.19	
actor	0	0.00	
total	16		

word	count	p(wly)
i	4	0.22
hate	4	0.22
love	1	0.06
the	4	0.22
movie	3	0.17
actor	2	0.11
total	18	

new review X_{new}: love love the movie

$$\log p(X_{\text{NeW}}|\text{POS}) = \sum_{w \in X_{\text{NeW}}} \log p(w|\text{POS}) = -4.96$$

$$\log p(X_{\text{DEW}} | \text{NEG}) = -8.91$$

posterior probs for X_{new}

$$\log p(\text{POS} | X_{\text{NeW}}) \propto \log P(\text{POS}) + \log p(X_{\text{NeW}} | \text{POS})$$

= -0.84 - 4.96 = -5.80

$$\log p(\text{NEG}|X_{\text{DeW}}) \propto -0.56 - 8.91 = -9.47$$

What does NB predict?

what if we see no positive training documents containing the word "awesome"?

$$p(awesome | POS) = 0$$

Add- α (pseudocount) smoothing

$$\text{unsmoothed } P(w_i | y) = \frac{\text{count}(w_i, y)}{\sum_{w \in V} \text{count}(w, y)}$$

smoothed
$$P(w_i | y) = \frac{\text{count}(w_i, y) + \alpha}{\sum_{w \in V} \text{count}(w, y) + \alpha |V|}$$

what happens if we do add- α smoothing as α increases?

Evaluation

- Must assess accuracy on held-out data. Either:
 - Train/test split
 - Cross validation
- Must tune hyperparameters (e.g. pseudocount) on a "development" or "tuning" set.
 - Train/dev/test split
- Significance testing for evaluation metric: given that the test set was small, could results have been due to chance?