Basic (N-Gram) Language Models

CS 485, Fall 2023
Applications of Natural Language Processing https://people.cs.umass.edu/~brenocon/cs485 f23/

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

goal: assign probability to a piece of text

- why would we ever want to do this?
- translation:
- P(iflew to the movies) $\lll \lll$ P(i went to the movies)
- speech recognition:
- P(i saw a van) >>>>> P(eyes awe of an)
- text classification (next week):
- P(i am so mad!! | [author is happy]) < P(i am so mad!! | [author is not happy])
- [Related goal: probabilistic samples for text generation]

You use Language Models every day!

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

- Related task: probability of an upcoming word:
$P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)$
- A model that computes either of these:
$P(W)$ or $P\left(w_{n} \mid w_{1}, w_{2} \ldots w_{n-1}\right)$ is called a language model or $L M$

How to compute P(W)

- How to compute this joint probability:
- P(its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability

Reminder: The Chain Rule

- Recall the definition of conditional probabilities

$$
P(B \mid A)=P(A, B) / P(A) \quad \text { Rewriting: } P(A, B)=P(A) P(B \mid A)
$$

- More variables:

$$
P(A, B, C, D)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C)
$$

- The Chain Rule in General $P\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots P\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)$

The Chain Rule applied to compute joint probability of words in sentence

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

P("its water is so transparent") = P (its) $\times \mathrm{P}($ water \mid its $) \times \mathrm{P}($ is \mid its water $)$ $\times \mathrm{P}($ so \mid its water is) $\times \mathrm{P}$ (transparent \mid its water is so)
let's try one step!

How to estimate these probabilities

- Could we just count and divide?
$P($ the \mid its water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)

How to estimate these probabilities

- Could we just count and divide?
$P($ the \mid its water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)
- No! Too many possible sentences!
-We'll never see enough data for estimating these

How much context to use?

Markov Assumption

- Simplifying assumption:
$P($ the \mid its water is so transparent that $) \approx P($ the \mid that $)$
- Or maybe
$P($ the \mid its water is so transparent that $) \approx P($ the \mid transparent that $)$

Markov Assumption

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
$$

- In other words, we approximate each component in the product
$P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)$

Simplest case: Unigram model

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i}\right)
$$

Some automatically generated sentences from a unigram model:
fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass
thrift, did, eighty, said, hard, 'm, july, bullish
that, or, limited, the

Approximating Shakespeare

-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have

-This shall forbid it should be branded, if renown made it empty.
-King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
-It cannot be but so.

N -gram models

- Can extend n-grams to higher n...
- N -gram models are surprisingly useful; state of the art 1948-2010s
- But this is an insufficient model of language!
- Long-distance dependencies
- Language is compositional
we're doing longer-distance language modeling near the end of this course

Estimating bigram probabilities

- The Maximum Likelihood Estimate (MLE)
- relative frequency based on the empirical counts on a training set

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

An example

$$
\begin{array}{ll}
P(\mathrm{I} \mid\langle\mathrm{s}\rangle)=\frac{2}{3}=.67 & \\
P(\mathrm{Sam} \mid\langle\mathrm{s}\rangle)=? ? ?
\end{array}
$$

An example

$$
\begin{array}{lll}
P(\mathrm{I} \mid\langle\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam} \mid\langle\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(\langle/ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

A bigger example: Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

- Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities $\left.P\left(w_{i} \mid w_{i-1}\right)=\frac{\text { met }}{=} \frac{C}{w_{i-1}}, w_{i}\right)$ $c\left(w_{i-1}\right)$

- Normalize by unigrams:
- Result:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities
$\mathrm{P}(<\mathrm{s}>\mid$ want english food </s>) $=$
$\mathrm{P}(|\mid<s>)$
$\times \mathrm{P}$ (want|I)
$\times \mathrm{P}($ english|want)
$\times \mathrm{P}$ (food \mid english)
$\times \mathrm{P}(</ \mathrm{s}>\mid$ food $)$
= . 000031
these probabilities get super tiny when we have longer inputs w/ more infrequent words... how can we get around this?

What kinds of knowledge?

- $P($ english|want $)=.0011$
- $P($ chinese \mid want $)=.0065$
$\cdot P($ to \mid want $)=.66$ grammar - infinitive verb
$\cdot P($ eat | to $)=.28$
- $P($ food | to $)=0$
???
- $P($ want \mid spend $)=0 ~$ grammar
- $P(i \mid<s>)=.25$

Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
- Assign higher probability to "real" or "frequently observed" sentences
- Than "ungrammatical" or "rarely observed" sentences?
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen.
- A test set is an unseen dataset that is different from our training set, totally unused.
- An evaluation metric tells us how well our model does on the test set.

Evaluation: How good is our model?

- The goal isn't to pound out fake sentences!
- Obviously, generated sentences get "better" as we increase the model order
- More precisely: using maximum likelihood estimators, higher order is always better likelihood on training set, but not test set

Intuition of Perplexity

- The Shannon Game:
- How well can we predict the next word?

I always order pizza with cheese and \qquad
The $33^{\text {rd }}$ President of the US was \qquad
I saw a \qquad

- Unigrams are terrible at this game. (Why?)
- A better model of a text
mushrooms 0.1
pepperoni 0.1 Claude Shannon
anchovies 0.01 (1916~2001)
fried rice 0.0001
and $1 e-100$
- is one which assigns a higher probability to the word that actually occurs
- compute per word log likelihood (M words, m test sentence s_{i})
ppl(wı..wn) =

Lower perplexity = better model

- Training 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order	Unigram	Bigram	Trigram
Perplexity 962	170	109	

Shakespeare as corpus

- $\mathrm{N}=884,647$ tokens, $\mathrm{V}=29,066$
- Shakespeare produced 300,000 bigram types out of $\mathrm{V}^{2}=844$ million possible bigrams.
- So 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Quadrigrams worse: What's coming out looks like Shakespeare because it is Shakespeare

Zeros

Training set:

- Test set
... denied the allegations ... denied the offer ... denied the reports ... denied the loan
... denied the claims
... denied the request
$P($ "offer" | denied the) $=0$

The intuition of smoothing (from Dan Klein)

- When we have sparse statistics:
$P(w \mid$ denied the $)$
3 allegations
2 reports
1 claims
1 request
7 total

- Steal probability mass to generalize better
$P(w \mid$ denied the $)$
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Add-one estimation (again!)

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!
- MLE estimate:

$$
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

- Add-1 estimate:

$$
P_{A d d-1}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+V}
$$

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams

$$
P^{*}\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)+1}{C\left(w_{n-1}\right)+V}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Reconstituted counts

$$
c^{*}\left(w_{n-1} w_{n}\right)=\frac{\left[C\left(w_{n-1} w_{n}\right)+1\right] \times C\left(w_{n-1}\right)}{C\left(w_{n-1}\right)+V}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Compare with raw bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0		0	0
0								
	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Add-1 estimation is a blunt instrument

- So add-1 isn't used for N -grams:
- We'll see better methods
- But add-1 is used to smooth other NLP models
- For text classification
- In domains where the number of zeros isn't so huge.

Backoff and Interpolation

- Sometimes it helps to use less context
- Condition on less context for contexts you haven't learned much about
- Backoff:
- use trigram if you have good evidence,
- otherwise bigram, otherwise unigram
- Interpolation:
- mix unigram, bigram, trigram
- Interpolation works better

Linear Interpolation

- Simple interpolation

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3} P\left(w_{n}\right)
\end{aligned}
$$

$$
\sum_{i} \lambda_{i}=1
$$

- Lambdas conditional on context:

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3}\left(w_{n-2}^{n-1}\right) P\left(w_{n}\right)
\end{aligned}
$$

Absolute discounting: just subtract a little from each count

- Suppose we wanted to subtract a little from a count of 4 to save probability mass for the zeros
- How much to subtract?
- Church and Gale (1991)'s clever idea
- Divide up 22 million words of AP Newswire
- Training and held-out set
- for each bigram in the training set
- see the actual count in the held-out set!

Bigram count in training	Bigram count in heldout set
0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

Absolute discounting: just subtract a little from each count

- Suppose we wanted to subtract a little from a count of 4 to save probability mass for the zeros
- How much to subtract?
- Church and Gale (1991)'s clever idea
- Divide up 22 million words of AP Newswire
- Training and held-out set
- for each bigram in the training set
- see the actual count in the held-out set!

Bigram count in training	Bigram count in heldout set
0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

why do you think the training and heldout counts differ?

Absolute Discounting Interpolation

- Save ourselves some time and just subtract 0.75 (or some d)!
discounted bigram
Interpolation weight
$P_{\text {AbsoluteDiscounting }}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)-d}{c\left(w_{i-1}\right)}+\lambda\left(\stackrel{\swarrow}{w-1}^{\swarrow}\right) P(w)$
- (Maybe keeping a couple extra values of d for counts 1 and 2)
- But should we really just use the regular unigram $\mathrm{P}(\mathrm{w})$?

