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goal: assign probability to a 
piece of text

• why would we ever want to do this? 

• translation: 
• P(i flew to the movies) <<<<< P(i went to the movies) 

• speech recognition: 
• P(i saw a van) >>>>> P(eyes awe of an) 

• text classification (next week): 
• P(i am so mad!! | [author is happy] ) <  

P(i am so mad!! | [author is not happy] ) 

• [Related goal:  probabilistic samples for text generation]

e
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You	use	Language	Models	every	day!

2/1/187
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Probabilistic Language Modeling
•Goal: compute the probability of a sentence or 
sequence of words: 
     P(W) = P(w1,w2,w3,w4,w5…wn) 

•Related task: probability of an upcoming word: 
      P(w5|w1,w2,w3,w4) 

•A model that computes either of these: 
      P(W)  or P(wn|w1,w2…wn-1)   is called a language model or LM
if
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How to compute P(W)

• How to compute this joint probability: 

•P(its, water, is, so, transparent, that) 

• Intuition: let’s rely on the Chain Rule of ProbabilityIn
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Reminder: The Chain Rule

•Recall the definition of conditional probabilities 
P(B|A) = P(A,B)/P(A)    Rewriting:   P(A,B) = P(A)P(B|A) 

•More variables: 
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) 

•The Chain Rule in General 
  P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

Dum
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The Chain Rule applied to compute joint 
probability of words in sentence

P(“its water is so transparent”) = 
 P(its) × P(water|its) ×  P(is|its water)  
  ×  P(so|its water is) ×  P(transparent|its water is so)

let's try one step!

n
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How to estimate these probabilities
• Could we just count and divide? 

•No!  Too many possible sentences! 
•We’ll never see enough data for estimating these

€ 

P(the | its water is so transparent that) =
Count(its water is so transparent that the)
Count(its water is so transparent that)

e can

in
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How to estimate these probabilities
• Could we just count and divide? 
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How much context to use?

10

low context

p w Unigram bag of words

put doc type tans names
local context

p w lastfew words

N gram Markov
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Markov Assumption

•Simplifying assumption: 
 
 
 
 

•Or maybe

€ 

P(the | its water is so transparent that) ≈ P(the | that)

€ 

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei Markov (1856~1922)

I
1st order

2ndorder
Males
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Markov Assumption

• In other words, we approximate each 
component in the product

n
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Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a, a, 
the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model:
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Dan*Jurafsky

Approximating'Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-

wiki
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N-gram models
• Can extend n-grams to higher n... 
• N-gram models are surprisingly useful; state of 

the art 1948-2010s  
• But this is an insufficient model of language! 

• Long-distance dependencies 
• Language is compositional

15

we're doing longer-distance language 
modeling near the end of this course
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• The Maximum Likelihood Estimate (MLE) 
- relative frequency based on the empirical counts on a 

training set

Estimating bigram probabilities

€ 

P(wi |wi−1) =
count(wi−1,wi )
count(wi−1)

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

c — count

p caul the FLEET
Ida
MM

u



17

An example

<s> I am Sam </s> 
<s> Sam I am </s> 
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE

???
???

É
n n

I
Comcast t
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An example
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€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE
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A bigger example:  
Berkeley Restaurant Project sentences

• can you tell me about any good cantonese restaurants 
close by 
•mid priced thai food is what i’m looking for 
• tell me about chez panisse 
• can you give me a listing of the kinds of food that are 
available 
• i’m looking for a good place to eat breakfast 
•when is caffe venezia open during the day
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Raw bigram counts

• Out of 9222 sentences

7

É
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Raw bigram probabilities
• Normalize by unigrams: 

• Result:

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

MLE
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Bigram estimates of sentence probabilities

P(<s> I want english food </s>) = 
 P(I|<s>)    
  ×  P(want|I)   
 ×  P(english|want)    
 ×  P(food|english)    
 ×  P(</s>|food) 
       =  .000031

these probabilities get super tiny when we 
have longer inputs w/ more infrequent 
words… how can we get around this?
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What kinds of knowledge?

•P(english|want)  = .0011 
•P(chinese|want) =  .0065 
•P(to|want) = .66 
•P(eat | to) = .28 
•P(food | to) = 0 
•P(want | spend) = 0 
•P (i | <s>) = .25

grammar — infinitive verb

grammar

???

about the world

E
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Evaluation: How good is our model?

• Does our language model prefer good sentences to bad ones? 
• Assign higher probability to “real” or “frequently 
observed” sentences  
• Than “ungrammatical” or “rarely observed” sentences? 

•We train parameters of our model on a training set. 
•We test the model’s performance on data we haven’t seen. 
• A test set is an unseen dataset that is different from our 
training set, totally unused. 
• An evaluation metric tells us how well our model does on 
the test set.
8
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Evaluation: How good is our model?

• The goal isn’t to pound out fake sentences! 
• Obviously, generated sentences get “better” as we 
increase the model order 
•More precisely: using maximum likelihood 
estimators, higher order is always better likelihood 
on training set, but not test set
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Intuition of Perplexity

• The Shannon Game: 
• How well can we predict the next word? 

• Unigrams are terrible at this game.  (Why?) 

• A better model of a text 
•  is one which assigns a higher probability to the word that actually occurs 
•  compute per word log likelihood  

(M words, m test sentence si)

I always order pizza with cheese and ____ 

The 33rd President of the US was ____ 

I saw a ____

mushrooms 0.1 

pepperoni 0.1 

anchovies 0.01 

…. 
fried rice 0.0001 

…. 
and 1e-100

Claude Shannon  
(1916~2001)

ppl(w1..wN) =ext I it lo p wi lm

Conn B better
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Lower perplexity = better model

•Training 38 million words, test 1.5 million 
words, Wall Street Journal

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109

u v u
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Dan*Jurafsky

Shakespeare'as'corpus

• N=884,647*tokens,*V=29,066
• Shakespeare*produced*300,000*bigram*types*
out*of*V2=*844*million*possible*bigrams.
• So*99.96%*of*the*possible*bigrams*were*never*seen*
(have*zero*entries*in*the*table)

• Quadrigrams worse:***What's*coming*out*looks*
like*Shakespeare*because*it*is Shakespeare
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Dan*Jurafsky

Zeros
• Training*set:

…*denied*the*allegations
…*denied*the*reports
…*denied*the*claims
…*denied*the*request

P(“offer”*|*denied*the)*=*0

• Test*set
…*denied*the*offer
…*denied*the*loana
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Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total
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Dan*Jurafsky

AddMone'estimation

• Also*called*Laplace*smoothing
• Pretend*we*saw*each*word*one*more*time*than*we*did
• Just*add*one*to*all*the*counts!

• MLE*estimate:

• Add,1*estimate:

PMLE (wi |wi−1) =
c(wi−1,wi )
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi )+1
c(wi−1)+V

(again!)

ee

se
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Dan*Jurafsky

Berkeley(Restaurant(Corpus:(Laplace(
smoothed(bigram(counts
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Dan*Jurafsky

LaplaceAsmoothed(bigrams
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Dan*Jurafsky

Reconstituted(counts
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Dan*Jurafsky

Compare(with(raw(bigram(counts
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Dan*Jurafsky

AddM1'estimation'is'a'blunt'instrument

• So*add,1*isn’t*used*for*N,grams:*
• We’ll*see*better*methods

• But*add,1*is*used*to*smooth*other*NLP*models
• For*text*classification*
• In*domains*where*the*number*of*zeros*isn’t*so*huge.
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Dan*Jurafsky

Backoff and(Interpolation
• Sometimes*it*helps*to*use*less context

• Condition*on*less*context*for*contexts*you*haven’t*learned*much*about*

• Backoff:'
• use*trigram*if*you*have*good*evidence,
• otherwise*bigram,*otherwise*unigram

• Interpolation:'
• mix*unigram,*bigram,*trigram

• Interpolation*works*better



39

Dan*Jurafsky

Linear'Interpolation

• Simple*interpolation

• Lambdas*conditional*on*context:

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in
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Dan*Jurafsky Absolute(discounting:(just(subtract(a(
little(from(each(count

• Suppose*we*wanted*to*subtract*a*little*
from*a*count*of*4*to*save*probability*
mass*for*the*zeros

• How*much*to*subtract*?

• Church*and*Gale*(1991)’s*clever*idea
• Divide*up*22*million*words*of*AP*

Newswire
• Training*and*held,out*set
• for*each*bigram*in*the*training*set
• see*the*actual*count*in*the*held,out*set!

Bigram*count*
in*training

Bigram*count*in*
heldout set

0 .0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26
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Dan*Jurafsky Absolute(discounting:(just(subtract(a(
little(from(each(count

• Suppose*we*wanted*to*subtract*a*little*
from*a*count*of*4*to*save*probability*
mass*for*the*zeros

• How*much*to*subtract*?

• Church*and*Gale*(1991)’s*clever*idea
• Divide*up*22*million*words*of*AP*

Newswire
• Training*and*held,out*set
• for*each*bigram*in*the*training*set
• see*the*actual*count*in*the*held,out*set!

Bigram*count*
in*training

Bigram*count*in*
heldout set

0 .0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

why do you think the training and heldout counts differ?
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Dan*Jurafsky

Absolute(Discounting(Interpolation
• Save*ourselves*some*time*and*just*subtract*0.75*(or*some*d)!

• (Maybe*keeping*a*couple*extra*values*of*d*for*counts*1*and*2)
• But*should*we*really*just*use*the*regular*unigram*P(w)?
70

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi )− d

c(wi−1)
+λ(wi−1)P(w)

discounted bigram

unigram

Interpolation weight


