
finna bless us

Let’s use three feature templates:
Tags: "V"erb and pr"O"noun  (and [S]tart)

y = V V V

Global feature vector f(x,y) =

Transition features: 
for example
fVV(x,y) = number of 
V-V transitions in y

Word-tag observation 
features: for example
fV,dog(x,y) = number of 
tokens that are word “dog” 
under a Verb tag

“ends with s”–tag features:
fV-s(x,y) = number of 
tokens that end with -s and 
are tagged as Verb

Model parameters θ =

(Global features have to be COUNTS: the reason why is further below.)
For 3 word vocabulary and 2 tag types, that’s J=14 total features.
Assume we have fixed model weights θ and would like to score the goodness of 
the above tag sequence.
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Global feature vector is from the sum of local feature vectors

f(x, y) =
X

t

ft(yt�1, yt, xt)

local feature vector including the transition between these two tags,
and the observation of word at position t.

ft(yt�1, yt, xt) =

The local features are, for example:
fVV(yprev, ycur, curword) = {1  if yprev=V and ycur=V, else 0}

fV,dog(yprev, ycur, curword) = {1  if ycur=V and curword=“dog”, else 0}

fV,-s(yprev, ycur, curword) = {1  if ycur=V and curword ends in “s”, else 0}

Example

 = f(x=finna bless us, y=V V V) =

f( START, V, finna)
+ f( V, V, bless)

+ f( V, V, us)
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And so on, repeated for different tags and words.
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Local feature decomposition implies that the scoring function decomposes, too.
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= θ'f(START, V, finna)  +  θ'f(V, V, bless)  +  θ’f(V, V, us)

=

On the whiteboard we talked about compiling these into factor scoring functions.

ɸt(yprev, ycur)  is a matrix of “pairwise goodness scores” (a.k.a. log-potentials) 
that summarize the model’s soft constraints between the tags at t-1 and t.  There is 
one such matrix for each position.  The collection of all these matrices is the input 
for forward-backward or Viterbi.  Note they include both transition and emission 
information.  Definition:

……………obs. feats…………….…..…trans. feats………

�t(yt�1, yt) = log p(yt | yt�1) + log p(wt | yt)
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For an HMM, this is:

We can equivalently write the transition/emission probability lookups as θ’f(.) dot-
products, where A and B range over all tags:
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