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• Sequence labeling problems

• Part of speech tags

• Models: HMMs, CRFs
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• Sequence labeling: from x1..xn, predict tags y1..yn

• Named entity recognition:
an example of span recognition

• BIO tags allow treatment as a sequence labeling problem

http://nlp.stanford.edu:8080/corenlp/process
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More span labeling tasks
• Syntactic chunking

4 http://brat.nlplab.org/examples.html
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• Biological entities
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What’s a part-of-speech (POS)?

• Syntax = how words compose to form larger meaning-
bearing units

• POS = syntactic categories for words

• You could substitute words within a class and have a 
syntactically valid sentence.

• Give information how words can combine.

• I saw the dog

• I saw the cat

• I saw the {table, sky, dream, school, anger, ...}

• (Phrasal/constituent categories generalize this idea.  POS 
tags are constrained to single words.)
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Abstract

We consider the problem of part-of-speech
tagging for informal, online conversational
text. We systematically evaluate the use of
large-scale unsupervised word clustering
and new lexical features to improve tagging
accuracy. With these features, our system
achieves state-of-the-art tagging results on
both Twitter and IRC POS tagging tasks;
Twitter tagging is improved from 90% to 93%
accuracy (more than 3% absolute). Quali-
tative analysis of these word clusters yields
insights about NLP and linguistic phenomena
in this genre. Additionally, we contribute the
first POS annotation guidelines for such text
and release a new dataset of English language
tweets annotated using these guidelines.
Tagging software, annotation guidelines, and
large-scale word clusters are available at:
http://www.ark.cs.cmu.edu/TweetNLP
This paper describes release 0.3 of the “CMU
Twitter Part-of-Speech Tagger” and annotated
data.

[This paper is forthcoming in Proceedings of
NAACL 2013; Atlanta, GA, USA.]

1 Introduction

Online conversational text, typified by microblogs,
chat, and text messages,1 is a challenge for natu-
ral language processing. Unlike the highly edited
genres that conventional NLP tools have been de-
veloped for, conversational text contains many non-
standard lexical items and syntactic patterns. These
are the result of unintentional errors, dialectal varia-
tion, conversational ellipsis, topic diversity, and cre-
ative use of language and orthography (Eisenstein,
2013). An example is shown in Fig. 1. As a re-
sult of this widespread variation, standard model-

1Also referred to as computer-mediated communication.
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Figure 1: Automatically tagged tweet showing nonstan-
dard orthography, capitalization, and abbreviation. Ignor-
ing the interjections and abbreviations, it glosses as He
asked for your last name so he can add you on Facebook.
The tagset is defined in Appendix A. Refer to Fig. 2 for
word clusters corresponding to some of these words.

ing assumptions that depend on lexical, syntactic,
and orthographic regularity are inappropriate. There
is preliminary work on social media part-of-speech
(POS) tagging (Gimpel et al., 2011), named entity
recognition (Ritter et al., 2011; Liu et al., 2011), and
parsing (Foster et al., 2011), but accuracy rates are
still significantly lower than traditional well-edited
genres like newswire. Even web text parsing, which
is a comparatively easier genre than social media,
lags behind newspaper text (Petrov and McDonald,
2012), as does speech transcript parsing (McClosky
et al., 2010).

To tackle the challenge of novel words and con-
structions, we create a new Twitter part-of-speech
tagger—building on previous work by Gimpel et
al. (2011)—that includes new large-scale distribu-
tional features. This leads to state-of-the-art results
in POS tagging for both Twitter and Internet Relay
Chat (IRC) text. We also annotated a new dataset of
tweets with POS tags, improved the annotations in
the previous dataset from Gimpel et al., and devel-
oped annotation guidelines for manual POS tagging
of tweets. We release all of these resources to the
research community:
• an open-source part-of-speech tagger for online

conversational text (§2);
• unsupervised Twitter word clusters (§3);

• Gimpel et al. 2011: Coarse POS system for 
Twitter

• Similar to Universal POS tagset
http://universaldependencies.org/u/pos/index.html
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Why do we want POS?

• Useful for many syntactic and other NLP tasks.

• Phrase identification (“chunking”)

• Named entity recognition

• Full parsing

• Sentiment

• Especially when there’s a low amount of training 
data

• Linzen et al.: backoff to POS for rare words

• Rule-based methods to assemble candidate 
phrases for later downstream processing

9
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POS patterns: sentiment

• Turney (2002): identify bigram phrases, from unlabeled 
corpus, useful for sentiment analysis.

10

mantic orientation of a given phrase is calculated 
by comparing its similarity to a positive reference 
word (“excellent”) with its similarity to a negative 
reference word (“poor”).   More specifically, a 
phrase is assigned a numerical rating by taking the 
mutual information between the given phrase and 
the word “excellent” and subtracting the mutual 
information between the given phrase and the word 
“poor”. In addition to determining the direction of 
the phrase’s semantic orientation (positive or nega-
tive, based on the sign of the rating), this numerical 
rating also indicates the strength of the semantic 
orientation (based on the magnitude of the num-
ber). The algorithm is presented in Section 2. 

Hatzivassiloglou and McKeown (1997) have 
also developed an algorithm for predicting seman-
tic orientation. Their algorithm performs well, but 
it is designed for isolated adjectives, rather than 
phrases containing adjectives or adverbs. This is 
discussed in more detail in Section 3, along with 
other related work. 

The classification algorithm is evaluated on 410 
reviews from Epinions2, randomly sampled from 
four different domains: reviews of automobiles, 
banks, movies, and travel destinations. Reviews at 
Epinions are not written by professional writers; 
any person with a Web browser can become a 
member of Epinions and contribute a review. Each 
of these 410 reviews was written by a different au-
thor. Of these reviews, 170 are not recommended 
and the remaining 240 are recommended (these 
classifications are given by the authors). Always 
guessing the majority class would yield an accu-
racy of 59%. The algorithm achieves an average 
accuracy of 74%, ranging from 84% for automo-
bile reviews to 66% for movie reviews. The ex-
perimental results are given in Section 4. 

The interpretation of the experimental results, 
the limitations of this work, and future work are 
discussed in Section 5. Potential applications are 
outlined in Section 6. Finally, conclusions are pre-
sented in Section 7. 

2 Classifying Reviews 

The first step of the algorithm is to extract phrases 
containing adjectives or adverbs. Past work has 
demonstrated that adjectives are good indicators of 
subjective, evaluative sentences (Hatzivassiloglou 

                                                           
2 http://www.epinions.com 

& Wiebe, 2000; Wiebe, 2000; Wiebe et al., 2001). 
However, although an isolated adjective may indi-
cate subjectivity, there may be insufficient context 
to determine semantic orientation. For example, 
the adjective “unpredictable” may have a negative 
orientation in an automotive review, in a phrase 
such as “unpredictable steering”, but it could have 
a positive orientation in a movie review, in a 
phrase such as “unpredictable plot”. Therefore the 
algorithm extracts two consecutive words, where 
one member of the pair is an adjective or an adverb 
and the second provides context. 

First a part-of-speech tagger is applied to the 
review (Brill, 1994).3 Two consecutive words are 
extracted from the review if their tags conform to 
any of the patterns in Table 1. The JJ tags indicate 
adjectives, the NN tags are nouns, the RB tags are 
adverbs, and the VB tags are verbs.4 The second 
pattern, for example, means that two consecutive 
words are extracted if the first word is an adverb 
and the second word is an adjective, but the third 
word (which is not extracted) cannot be a noun. 
NNP and NNPS (singular and plural proper nouns) 
are avoided, so that the names of the items in the 
review cannot influence the classification. 
Table 1. Patterns of tags for extracting two-word 
phrases from reviews.  

 First Word Second Word Third Word  
(Not Extracted) 

1. JJ NN or NNS anything 
2. RB, RBR, or 

RBS 
JJ not NN nor NNS 

3. JJ JJ not NN nor NNS 
4. NN or NNS JJ not NN nor NNS 
5. RB, RBR, or 

RBS 
VB, VBD, 
VBN, or VBG 

anything 

The second step is to estimate the semantic ori-
entation of the extracted phrases, using the PMI-IR 
algorithm. This algorithm uses mutual information 
as a measure of the strength of semantic associa-
tion between two words (Church & Hanks, 1989). 
PMI-IR has been empirically evaluated using 80 
synonym test questions from the Test of English as 
a Foreign Language (TOEFL), obtaining a score of 
74% (Turney, 2001). For comparison, Latent Se-
mantic Analysis (LSA), another statistical measure 
of word association, attains a score of 64% on the 

                                                           
3 http://www.cs.jhu.edu/~brill/RBT1_14.tar.Z 
4 See Santorini (1995) for a complete description of the tags. 

(plus sentiment PMI stuff)
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same 80 TOEFL questions (Landauer & Dumais, 
1997).  

The Pointwise Mutual Information (PMI) be-
tween two words, word1 and word2, is defined as 
follows (Church & Hanks, 1989): 

                                             p(word1 & word2) 
PMI(word1, word2) = log2 
                                             p(word1) p(word2) 

 

(1) 

Here, p(word1 & word2) is the probability that 
word1 and word2 co-occur. If the words are statisti-
cally independent, then the probability that they 
co-occur is given by the product p(word1) 
p(word2). The ratio between p(word1 & word2) and 
p(word1) p(word2) is thus a measure of the degree 
of statistical dependence between the words. The 
log of this ratio is the amount of information that 
we acquire about the presence of one of the words 
when we observe the other.  

The Semantic Orientation (SO) of a phrase, 
phrase, is calculated here as follows: 

     SO(phrase) = PMI(phrase, “excellent”)  
                          - PMI(phrase, “poor”) (2) 

The reference words “excellent” and “poor” were 
chosen because, in the five star review rating sys-
tem, it is common to define one star as “poor” and 
five stars as “excellent”. SO is positive when 
phrase is more strongly associated with “excellent” 
and negative when phrase is more strongly associ-
ated with “poor”.   

PMI-IR estimates PMI by issuing queries to a 
search engine (hence the IR in PMI-IR) and noting 
the number of hits (matching documents). The fol-
lowing experiments use the AltaVista Advanced 
Search engine5, which indexes approximately 350 
million web pages (counting only those pages that 
are in English). I chose AltaVista because it has a 
NEAR operator. The AltaVista NEAR operator 
constrains the search to documents that contain the 
words within ten words of one another, in either 
order. Previous work has shown that NEAR per-
forms better than AND when measuring the 
strength of semantic association between words 
(Turney, 2001). 

Let hits(query) be the number of hits returned, 
given the query query. The following estimate of 
SO can be derived from equations (1) and (2) with 
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some minor algebraic manipulation, if co-
occurrence is interpreted as NEAR: 

SO(phrase) = 

          hits(phrase NEAR “excellent”) hits(“poor”) 
log2 
          hits(phrase NEAR “poor”) hits(“excellent”) 

 
 

(3) 

Equation (3) is a log-odds ratio (Agresti, 1996). 
To avoid division by zero, I added 0.01 to the hits. 
I also skipped phrase when both hits(phrase 
NEAR “excellent”) and  hits(phrase NEAR 
“poor”) were (simultaneously) less than four. 
These numbers (0.01 and 4) were arbitrarily cho-
sen. To eliminate any possible influence from the 
testing data, I added “AND (NOT host:epinions)” 
to every query, which tells AltaVista not to include 
the Epinions Web site in its searches. 

The third step is to calculate the average seman-
tic orientation of the phrases in the given review 
and classify the review as recommended if the av-
erage is positive and otherwise not recommended.  

Table 2 shows an example for a recommended 
review and Table 3 shows an example for a not 
recommended review. Both are reviews of the 
Bank of America. Both are in the collection of 410 
reviews from Epinions that are used in the experi-
ments in Section 4. 
Table 2. An example of the processing of a review that 
the author has classified as recommended.6 

Extracted Phrase Part-of-Speech 
Tags 

Semantic 
Orientation 

online experience  JJ NN  2.253 
low fees  JJ NNS  0.333 
local branch  JJ NN  0.421 
small part  JJ NN  0.053 
online service  JJ NN  2.780 
printable version  JJ NN -0.705 
direct deposit  JJ NN  1.288 
well other  RB JJ  0.237 
inconveniently  
located  

RB VBN -1.541 

other bank  JJ NN -0.850 
true service  JJ NN -0.732 
Average Semantic Orientation  0.322 

 

                                                           
6 The semantic orientation in the following tables is calculated 
using the natural logarithm (base e), rather than base 2. The 
natural log is more common in the literature on log-odds ratio. 
Since all logs are equivalent up to a constant factor, it makes 
no difference for the algorithm. 

(plus sentiment PMI stuff)
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POS patterns: simple noun phrases

• Quick and dirty noun phrase identification (Justeson 
and Katz 1995, Handler et al. 2016)

• BaseNP  =  (Adj | Noun)* Noun

• PP   =  Prep Det* BaseNP

• NP  =  BaseNP PP* 

11

16 John S. Justeson and Slava M. Katz

but adverbials - as modifiers of modifiers - play a tertiary semantic role; they form
a new adjectival modifier of a noun or phrase within an NP. So, although NP
terms containing adverbs do occur (e.g. almost periodic function), they are quite rare.
Their semantic role may be more prominent in adjective phrase technical terms, as
in statistically significant; adjective terms constitute overall 4% of our dictionary
samples, and only 2 consist of more than one word.

3 A terminology identification algorithm

Section 1 suggests that exact repetition should discriminate well between terminolog-
ical and nonterminological NPs. Genuinely large numbers of instances in particular
are almost certain to be terminological: excessive repetition is truly anomalous for
purely descriptive NPs. Conversely, repetition of nowterminological NPs at any rate
is unusual, except in widely spaced occurrences in larger documents; raw frequency
should provide a powerful cue to terminological status, without regard to the prob-
ability of co-occurrence of the constituent words under assumptions of randomness.

Accordingly, one effective criterion for terminology identification is simple rep-
etition: an NP having a frequency of two or more can be entertained as a likely
terminological unit, i.e. as a candidate for inclusion in a list of technical terms from
a document. The candidate list that results from the application of such a criterion
should consist mainly of terminological units. In fact, this list should include almost
all technical terms in the text that are novel and all that are topically prominent.

Structurally, section 2 indicates that terminological NPs are short, rarely more
than 4 words long, and that words other than adjectives and nouns are unusual in
them. Among other parts of speech, only prepositions occur in as many as 3% of
terms; almost always, this is a single preposition between two noun phrases.

3.1 Constraints

The proposed algorithm requires satisfaction of two constraints applied to word
strings in text. Strings satisfying the constraints are the intended output of the
algorithm. Various parameters that can be used to influence the behavior of the
algorithm are introduced in section 3.2.

Frequency: Candidate strings must have frequency 2 or more in the text.
Grammatical structure: Candidate strings are those multi-word noun phrases that

are specified by the regular expression ((A | N)+ | ((A \ N)'{NP)-)(A \ N)')N,
where
A is an ADJECTIVE, but not a determiner.5

5 Determiners include articles, demonstratives, possessive pronouns, and quantifiers. Some common
determiners (after Huddleston 1984:233), occupying three fixed positions relative to one another, are
as follows. Pre-determiners: all, both; half, one-third, three-quarters,...; double, twice, three times; such,
what(exclamative). Determiners proper: the; this, these, that, those; my, our, your; we, us, you; which,
what(relative), what(interrogative); a, another, some, any, no, either, neither; each, enough, much,
more, less; a few(positive), a little(positive). Post-determiners: every; many, several, few(negative),
little(negative); one, two, three...; (a) dozen.
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Congressional bills
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Method Party Ranked List

unigrams Democrat and, deleted, health, mental, domestic, inserting, grant, programs, prevention, violence, program,
striking, education, forensic, standards, juvenile, grants, partner, science, research

Republican any, offense, property, imprisoned, whoever, person, more, alien, knowingly, officer, not, united,
intent, commerce, communication, forfeiture, immigration, official, interstate, subchapter

NPFST Democrat mental health, juvenile justice and delinquency prevention act, victims of domestic violence,
child support enforcement act of u.s.c., fiscal year, child abuse prevention and treatment act,
omnibus crime control and safe streets act of u.s.c., date of enactment of this act,
violence prevention, director of the national institute, former spouse,
section of the foreign intelligence surveillance act of u.s.c., justice system, substance abuse
criminal street gang, such youth, forensic science, authorization of appropriations, grant program

Republican special maritime and territorial jurisdiction of the united states, interstate or foreign commerce,
federal prison, section of the immigration and nationality act,
electronic communication service provider, motor vehicles, such persons, serious bodily injury,
controlled substances act, department or agency, one year, political subdivision of a state,
civil action, section of the immigration and nationality act u.s.c., offense under this section,
five years, bureau of prisons, foreign government, explosive materials, other person

Table 4: Ranked lists of unigrams and representative phrases of length two or more for Democrats and Republicans.

Our open-source implementation of NPFST is
available at http://slanglab.cs.umass.edu/phrases/.
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DRAFT
8.3 • PART-OF-SPEECH TAGGING 7

That can be a determiner (Does that flight serve dinner) or a complementizer
(I thought that your flight was earlier). The problem of POS-tagging is to resolveresolution
these ambiguities, choosing the proper tag for the context. Part-of-speech tagging is
thus one of the many disambiguation tasks in language processing.disambiguation

How hard is the tagging problem? And how common is tag ambiguity? Fig. 8.2
shows the answer for the Brown and WSJ corpora tagged using the 45-tag Penn
tagset. Most word types (80-86%) are unambiguous; that is, they have only a sin-
gle tag (Janet is always NNP, funniest JJS, and hesitantly RB). But the ambiguous
words, although accounting for only 14-15% of the vocablary, are some of the most
common words of English, and hence 55-67% of word tokens in running text are
ambiguous. Note the large differences across the two genres, especially in token
frequency. Tags in the WSJ corpus are less ambiguous, presumably because this
newspaper’s specific focus on financial news leads to a more limited distribution of
word usages than the more general texts combined into the Brown corpus.

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Figure 8.2 The amount of tag ambiguity for word types in the Brown and WSJ corpora,
from the Treebank-3 (45-tag) tagging. These statistics include punctuation as words, and
assume words are kept in their original case.

Some of the most ambiguous frequent words are that, back, down, put and set;
here are some examples of the 6 different parts-of-speech for the word back:

earnings growth took a back/JJ seat
a small building in the back/NN
a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP about debt
I was twenty-one back/RB then

Still, even many of the ambiguous tokens are easy to disambiguate. This is
because the different tags associated with a word are not equally likely. For ex-
ample, a can be a determiner or the letter a (perhaps as part of an acronym or an
initial). But the determiner sense of a is much more likely. This idea suggests a
simplistic baseline algorithm for part of speech tagging: given an ambiguous word,
choose the tag which is most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).

How good is this baseline? A standard way to measure the performance of part-
of-speech taggers is accuracy: the percentage of tags correctly labeled on a human-accuracy

labeled test set. One commonly used test set is sections 22-24 of the WSJ corpus. If
we train on the rest of the WSJ corpus and test on that test set, the most-frequent-tag
baseline achieves an accuracy of 92.34%.

By contrast, the state of the art in part-of-speech tagging on this dataset is around
97% tag accuracy, a performance that is achievable by a number of statistical algo-

Most words types 
are unambiguous ...

Can we just use a tag dictionary
(one tag per word type)?

• Ambiguous wordtypes tend to be very common ones.

• I know that he is honest = IN  (relativizer)

• Yes, that play was nice = DT  (determiner)

• You can’t go that far = RB  (adverb)
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labeled test set. One commonly used test set is sections 22-24 of the WSJ corpus. If
we train on the rest of the WSJ corpus and test on that test set, the most-frequent-tag
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Most words types 
are unambiguous ...

But not so for 
tokens!
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Can we just use a tag dictionary
(one tag per word type)?

• Ambiguous wordtypes tend to be very common ones.

• I know that he is honest = IN  (relativizer)

• Yes, that play was nice = DT  (determiner)

• You can’t go that far = RB  (adverb)
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• stopped here 3/6
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4 CONFUSING PARTS OF SPEECH 

4 Confusing parts of speech 
This section discusses parts of speech that are easily confused and gives guidelines on how to tag such cases. 

When they are the first members of the double conjunctions both . . . and, either . . . or and neither . . . nor, 
both, either and neither are tagged as coordinating conjunctions (CC), not as determiners (DT). 

EXAMPLES: Either/DT child could sing. 

But: 

Either/CC a boy could sing or/CC a girl could dance. 
Either/CC a boy or/CC a girl could sing. 
Either/CC a boy or/CC girl could sing. 

Be aware that either or neither can sometimes function as determiners (DT) even in the presence of or or 
nor. 

EXAMPLE: Either/DT boy or/CC girl could sing. 

CD or JJ 

Number-number combinations should be tagged as adjectives (JJ) if they have the same distribution as 
adjectives . 

EXAMPLES: a 50-3/JJ victory (cf. a handy/JJ victory) 

Hyphenated fractions one-half, three-fourths, seven-eighths, one-and-a-half, seven-and-three-eighths should 
be tagged as adjectives (JJ) when they are prenominal modifiers, but as adverbs (RB) if they could be 
replaced by double or twice. 

EXAMPLES: one-half/J J cup; cf. a full/JJ cup 
one-half/RB the amount; cf. twice/RB the amount; double/RB the amount 

Sometimes, it is unclear whether one is cardinal number or a noun. In general, it should be tagged as a 
cardinal number (CD) even when its sense is not clearly that of a numeral. 

EXAMPLE: one/CD of the best reasons 

But if it could be pluralized or modified by an adjective in a particular context, it is a common noun (NN). 

EXAMPLE: the only (good) one/NN of its kind 
(cf. the only (good) ones/NNS of their kind) 

In the collocation another one, one should also be tagged as a common noun (NN). 

Hyphenated fractions one-half, three-fourths, seven-eighths, one-and-a-half, seven-and-three-eighths should 
be tagged as adjectives (JJ) when they are prenominal modifiers, but as adverbs (RB) if they could be 
replaced by double or twice. 

Need careful guidelines (and do annotators always follow them?)
PTB POS guidelines,  Santorini (1990)
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Some other lexical ambiguities

• Prepositions (P) versus verb particles (T)

• turn into/P a monster

• take out/T the trash

• check it out/T,  what’s going on/T,  shout out/T

16

Careful annotator guidelines are necessary to define what to do in 
many cases.
•http://repository.upenn.edu/cgi/viewcontent.cgi?article=1603&context=cis_reports
•http://www.ark.cs.cmu.edu/TweetNLP/annot_guidelines.pdf

Test:
turn slowly into a monster
*take slowly out the trash
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Some other lexical ambiguities

• Prepositions (P) versus verb particles (T)

• turn into/P a monster
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• check it out/T,  what’s going on/T,  shout out/T

16

Careful annotator guidelines are necessary to define what to do in 
many cases.
•http://repository.upenn.edu/cgi/viewcontent.cgi?article=1603&context=cis_reports
•http://www.ark.cs.cmu.edu/TweetNLP/annot_guidelines.pdf

Test:
turn slowly into a monster
*take slowly out the trash

• this,that -- pronouns versus determiners

• i just orgasmed over this/O

• this/D wind is serious

Tuesday, March 6, 18

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1603&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1603&context=cis_reports
http://www.ark.cs.cmu.edu/TweetNLP/annot_guidelines.pdf
http://www.ark.cs.cmu.edu/TweetNLP/annot_guidelines.pdf


How to build a POS tagger?

• Sources of information:

• POS tags of surrounding words:
syntactic context

• The word itself

• Features!

• Word-internal information

• External lexicons

• Features from surrounding words

17

HMM

Classifier

CRF
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Sequence labeling
• Seq. labeling as classification:

Each position m gets an independent classification,
as a log-linear model.

18

Chapter 6

Sequence labeling

In sequence labeling, we want to assign tags to words, or more generally, we want to
assign discrete labels to elements in a sequence. There are many applications of sequence
labeling in natural language processing, and chapter 7 presents an overview. One of the
most classic application of sequence labeling is part-of-speech tagging, which involves
tagging each word by its grammatical category. Coarse-grained grammatical categories
include NOUNs, which describe things, properties, or ideas, and VERBs, which describe
actions and events. Given a simple sentence like,

(6.1) They can fish.

we would like to produce the tag sequence N V V, with the modal verb can labeled as a
verb in this simplified example.

6.1 Sequence labeling as classification

One way to solve tagging problems is to treat them as classification. We can write f((w, m), y)
to indicate the feature function for applying tag y to word w

m

in the sequence w
1

, w
2

, . . . , w
M

.
A simple tagging model would have a single base feature, the word itself:

f((w = they can fish, m = 1), N) =hthey, Ni (6.1)
f((w = they can fish, m = 2), V) =hcan, Vi (6.2)
f((w = they can fish, m = 3), V) =hfish, Vi. (6.3)

Here the feature function takes three arguments as input: the sentence to be tagged (they
can fish in all cases), the proposed tag (e.g., N or V), and the word token to which this tag
is applied. This simple feature function then returns a single feature: a tuple including
the word to be tagged and the tag that has been proposed. If the vocabulary size is V
and the number of tags is K, then there are V ⇥ K features. Each of these features must

101

argmax

y
✓Tf((w,m), y)

p(ym | w1..wn)
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101

• But syntactic (tag) context is sometimes 
necessary!

argmax

y
✓Tf((w,m), y)

p(ym | w1..wn)
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• Hidden Markov model
• Fully generative, simple sequence model

• Supports many operations

• P(w):  Likelihood (generative model)

• Forward algorithm

• P(y | w):  Predicted sequence (“decoding”)

• Viterbi algorithm

• P(ym | w):  Predicted tag marginals

• Forward-Backward algorithm

• The HMM is a type of log-linear model
19

• Seq. labeling as structured prediction

6.2. SEQUENCE LABELING AS STRUCTURE PREDICTION 103

between a determiner and a verb, and must be a noun. And indeed, adjectives can often
have a second interpretation as nouns when used in this way (e.g., the young, the restless).
This reasoning, in which the labeling decisions are intertwined, cannot be applied in a
setting where each tag is produced by an independent classification decision.

6.2 Sequence labeling as structure prediction

As an alternative, we can think of the entire sequence of tags as a label itself. For a given
sequence of words w

1:M

= (w
1

, w
2

, . . . , w
M

), there is a set of possible taggings Y(w
1:M

) =
YM , where Y = {N, V, D, . . .} refers to the set of individual tags, and YM refers to the
set of tag sequences of length M . We can then treat the sequence labeling problem as a
classification problem in the label space Y(w

1:M

),

ŷ

1:M

= argmax
y1:M2Y(w1:M )

✓

>
f(w

1:M

,y
1:M

), (6.7)

where y

1:M

= (y
1

, y
2

, . . . , y
M

) is a sequence of M tags. Note that in this formulation, we
have a feature function that consider the entire tag sequence y

1:M

. Such a feature function
can therefore include features that capture the relationships between tagging decisions,
such as the preference that determiners not follow nouns, or that all sentences have verbs.

Given that the label space is exponentially large in the length of the sequence w
1

, . . . , w
M

,
can it ever be practical to perform tagging in this way? The problem of making a series of
interconnected labeling decisions is known as inference. Because natural language is full
of interrelated grammatical structures, inference is a crucial aspect of contemporary natu-
ral language processing. In English, it is not unusual to have sentences of length M = 20;
part-of-speech tag sets vary in size from 10 to several hundred. Taking the low end of this
range, we have #|Y(w

1:M

)| ⇡ 1020, one hundred billion billion possible tag sequences.
Enumerating and scoring each of these sequences would require an amount of work that
is exponential in the sequence length; in other words, inference is intractable.

However, the situation changes when we restrict the feature function. Suppose we
choose features that never consider more than one tag. We can indicate this restriction as,

f(w,y) =

MX

m=1

f(w, y
m

, m), (6.8)

where we use the shorthand w , w

1:M

. The summation in (6.8) means that the overall
feature vector is the sum of feature vectors associated with each individual tagging deci-
sion. These features are not capable of capturing the intuitions that might help us solve
garden path sentences, such as the insight that determiners rarely follow nouns in En-
glish. But this restriction does make it possible to find the globally optimal tagging, by

(c) Jacob Eisenstein 2014-2017. Work in progress.
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Viterbi algorithm
• If the feature function decomposes into local 

features, dynamic programming gives global solution

20

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.
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many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
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Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,
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ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,
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• Decompose:

• Define Viterbi variables:
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