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Statistical variability in NLP

• How to trust experiment results, given many 
sources of variability?

• How was the text data sampled?

• How were the annotations sampled?

• How variably do the human annotators behave?

• How variable are the computational algorithms?

• Today: Variability due to small sample size
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Text data variability

• Mathematically, the easiest case to analyze:
What if we resampled the tokens/sentences/documents 
from a similar population as our current data sample?

• Assume units are sampled i.i.d.; then apply your favorite 
statistical significance/confidence interval testing 
technique

• T-tests, binomial tests, ...

• Bootstrapping

• Paired tests

• For

• 1. Null hypothesis testing

• 2. Confidence intervals
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Null hypothesis test

• Must define a null hypothesis you wish to ~disprove

• pvalue = Probability of a result as least as extreme, if 
the null hypothesis was active

• Example: paired testing of classifiers with exact 
binomial test (R: binom.test)
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Figure 3.5: Probability mass function for the binomial distribution. The pink highlighted
areas represent the cumulative probability for a significance test on an observation of
k = 10 and N = 30.

We write k ⇠ Binom(✓, N) to indicate that k is drawn from a binomial distribution, with
parameter N indicating the number of random “draws”, and ✓ indicating the probability
of “success” on each draw. The probability mass function (PMF) of the binomial distri-
bution is,

pBinom(k; N, ✓) =

✓
N

k

◆
✓k(1 � ✓)N�k, [3.9]

with ✓k representing the probability of the k successes, (1 � ✓)N�k representing the prob-
ability of the N � k unsuccessful draws. The expression

�
N
k

�
= N !

k!(N�k)! is a binomial
coefficient, representing the number of possible orderings of events; this ensures that the
distribution sums to one over all k 2 {0, 1, 2, . . . , N}.

Under the null hypothesis, ✓ = 1

2

: when the classifiers disagree, they are each equally
likely to be right. Now suppose that among N disagreements, c

1

is correct only k <
N
2

times. The probability of c
1

being correct k or fewer times is the one-tailed p-value,
because it is computed from the area under the binomial probability mass function from
0 to k, as shown in the left tail of Figure 3.5. This cumulative probability is computed as
a sum over all values i  k,
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The one-tailed p-value applies only to the asymmetric null hypothesis that c
1

is at least
as accurate as c

2

. To test the two-tailed null hypothesis that c
1

and c
2

are equally accu-
rate, we would take the sum of one-tailed p-values, where the second term is computed
from the right tail of Figure 3.5. The binomial distribution is symmetric, so this can be
computed by simply doubling the one-tailed p-value.

(c) Jacob Eisenstein 2018. Work in progress.
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Statistical tests

• Closed-form tests

• t-tests, exact binomial test, chi-square tests....

• Bootstrapping

• All methods can give both p-values and 
confidence intervals
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Bootstrapping
• Bootstrapped CI methods

• Percentile

• Standard error-based normal approx, etc.

• Theoretical guarantees (under various regularity conditions... for 

a slightly different CI method...):
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Bootstrap Confidence Interval

1. Draw a bootstrap sample X⇤
1

, . . . , X⇤
n ⇠ Pn. Compute b✓⇤n = g(X⇤

1

, . . . , X⇤
n).

2. Repeat the previous step, B times, yielding estimators b✓⇤n,1, . . . , b✓⇤n,B.

3. Let

bF (t) =
1

B

BX

j=1

I
⇣p

n(b✓⇤n,j � b✓n
⌘
 t).

4. Let

Cn =


b✓n �

t
1�↵/2p

n
, b✓n �

t↵/2p
n

�

where t↵/2 = bF�1(↵/2) and t
1�↵/2 = bF�1(1� ↵/2).

5. Output Cn.

Theorem 2 Under appropriate regularity conditions,

P(✓ 2 Cn) = 1� ↵�O

✓
1p
n

◆
.

as n ! 1.

See the appendix for a discussion of the regularity conditions.

4 Examples

Example 3 Consider the polynomial regression model Y = g(X) + ✏ where X, Y 2 R and
g(x) = �

0

+ �
1

x + �
2

x2. Given data (X
1

, Y
1

), . . . , (Xn, Yn) we can estimate � = (�
0

, �
1

, �
2

)
with the least squares estimator b�. Suppose that g(x) is concave and we are interested in
the location at which g(x) is maximized. It is easy to see that the maximum occurs at x = ✓

where ✓ = �(1/2)�
1

/�
2

. A point estimate of ✓ is b✓ = �(1/2)b�
1

/b�
2

. Now we use the
bootstrap to get a confidence interval for ✓. Figure 1 shows 50 points drawn from the above
model with �

0

= �1, �
1

= 2, �
2

= �1. The Xi’s were sample uniformly on [0, 2] and we
took ✏i ⇠ N(0, .22). In this case, ✓ = 1. The true and estimated curves are shown in the
figure. At the bottom of the plot we show the 95 percent boostrap confidence interval based
on B = 1, 000.
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• How many samples?  10,000-100,000
(governs monte carlo error; can always make nearly 0)

• Paired bootstrap

• Bootstrapped p-values
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• (stopped here 2/27)
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Berg-Kirkpatrick et al. 2012

• Paired bootstrap test

• (Subtle, debatable bug?)

• Stat. sig results may not transfer domains

• Researcher effects?  Or is paired testing 
working correctly?
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As mentioned, a major benefit of the bootstrap is
that any evaluation metric can be used to compute
�(x).3 We run the bootstrap using several metrics:
F1-measure for constituency parsing, unlabeled de-
pendency accuracy for dependency parsing, align-
ment error rate (AER) for word alignment, ROUGE
score (Lin, 2004) for summarization, and BLEU
score for machine translation.4 We report all met-
rics as percentages.

3 Experiments

Our first goal is to explore the relationship be-
tween metric gain, �(x), and statistical significance,
p-value(x), for a range of NLP tasks. In order to say
anything meaningful, we will need to see both �(x)
and p-value(x) for many pairs of systems.

3.1 Natural Comparisons

Ideally, for a given task and test set we could obtain
outputs from all systems that have been evaluated
in published work. For each pair of these systems
we could run a comparison and compute both �(x)
and p-value(x). While obtaining such data is not
generally feasible, for several tasks there are pub-
lic competitions to which systems are submitted by
many researchers. Some of these competitions make
system outputs publicly available. We obtained sys-
tem outputs from the TAC 2008 workshop on auto-
matic summarization (Dang and Owczarzak, 2008),
the CoNLL 2007 shared task on dependency parsing
(Nivre et al., 2007), and the WMT 2010 workshop
on machine translation (Callison-Burch et al., 2010).

For cases where the metric linearly decomposes over sentences,
the mean of �(x(i)) is �(x). By the central limit theorem, the
distribution will be symmetric for large test sets; for small test
sets it may not.

3Note that the bootstrap procedure given only approximates
the true significance level, with multiple sources of approxima-
tion error. One is the error introduced from using a finite num-
ber of bootstrap samples. Another comes from the assumption
that the bootstrap samples reflect the underlying population dis-
tribution. A third is the assumption that the mean bootstrap gain
is the test gain (which could be further corrected for if the metric
is sufficiently ill-behaved).

4To save time, we can compute �(x) for each bootstrap sam-
ple without having to rerun the evaluation metric. For our met-
rics, sufficient statistics can be recorded for each sentence and
then sampled along with the sentences when constructing each
x

(i) (e.g. size of gold, size of guess, and number correct are suf-
ficient for F1). This makes the bootstrap very fast in practice.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2

1
  
- 

 p
-v

al
u
e

ROUGE

Different research groups
Same research group

Figure 2: TAC 2008 Summarization: Confidence vs.
ROUGE improvement on TAC 2008 test set for comparisons
between all pairs of the 58 participating systems at TAC 2008.
Comparisons between systems entered by the same research
group and comparisons between systems entered by different
research groups are shown separately.

3.1.1 TAC 2008 Summarization
In our first experiment, we use the outputs of the

58 systems that participated in the TAC 2008 work-
shop on automatic summarization. For each possi-
ble pairing, we compute �(x) and p-value(x) on the
non-update portion of the TAC 2008 test set (we or-
der each pair so that the gain, �(x), is always pos-
itive).5 For this task, test instances correspond to
document collections. The test set consists of 48
document collections, each with a human produced
summary. Figure 2 plots the ROUGE gain against
1 � p-value, which we refer to as confidence. Each
point on the graph corresponds to an individual pair
of systems.

As expected, larger gains in ROUGE correspond
to higher confidences. The curved shape of the plot
is interesting. It suggests that relatively quickly we
reach ROUGE gains for which, in practice, signif-
icance tests will most likely be positive. We might
expect that systems whose outputs are highly corre-
lated will achieve higher confidence at lower met-
ric gains. To test this hypothesis, in Figure 2 we

5In order to run bootstraps between all pairs of systems
quickly, we reuse a random sample counts matrix between boot-
strap runs. As a result, we no longer need to perform quadrat-
ically many corpus resamplings. The speed-up from this ap-
proach is enormous, but one undesirable effect is that the boot-
strap estimation noise between different runs is correlated. As a
remedy, we set b so large that the correlated noise is not visible
in plots.
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Figure 3: CoNLL 2007 Dependency parsing: Confidence vs.
unlabeled dependency accuracy improvement on the Chinese
CoNLL 2007 test set for comparisons between all pairs of the
21 participating systems in CoNLL 2007 shared task. Com-
parisons between systems entered by the same research group
and comparisons between systems entered by different research
groups are shown separately.

separately show the comparisons between systems
entered by the same research group and compar-
isons between systems entered by different research
groups, with the expectation that systems entered by
the same group are likely to have more correlated
outputs. Many of the comparisons between systems
submitted by the same group are offset from the
main curve. It appears that they do achieve higher
confidences at lower metric gains.

Given the huge number of system comparisons in
Figure 2, one obvious question to ask is whether
we can take the results of all these statistical sig-
nificance tests and estimate a ROUGE improvement
threshold that predicts when future statistical sig-
nificance tests will probably be significant at the
p-value(x) < 0.05 level. For example, let’s say we
take all the comparisons with p-value between 0.04
and 0.06 (47 comparisons in all in this case). Each
of these comparisons has an associated metric gain,
and by taking, say, the 95th percentile of these met-
ric gains, we get a potentially useful threshold. In
this case, the computed threshold is 1.10 ROUGE.

What does this threshold mean? Well, based on
the way we computed it, it suggests that if somebody
reports a ROUGE increase of around 1.10 on the ex-
act same test set, there is a pretty good chance that a
statistical significance test would show significance
at the p-value(x) < 0.05 level. After all, 95% of

the borderline significant differences that we’ve al-
ready seen showed an increase of even less than 1.10
ROUGE. If we’re evaluating past work, or are in
some other setting where system outputs just aren’t
available, the threshold could guide our interpreta-
tion of reports containing only summary scores.

That being said, it is important that we don’t over-
interpret the meaning of the 1.10 ROUGE threshold.
We have already seen that pairs of systems submit-
ted by the same research group and by different re-
search groups follow different trends, and we will
soon see more evidence demonstrating the impor-
tance of system correlation in determining the rela-
tionship between metric gain and confidence. Addi-
tionally, in Section 4, we will see that properties of
the test corpus have a large effect on the trend. There
are many factors are at work, and so, of course, met-
ric gain alone will not fully determine the outcome
of a paired significance test.

3.1.2 CoNLL 2007 Dependency Parsing
Next, we run an experiment for dependency pars-

ing. We use the outputs of the 21 systems that par-
ticipated in the CoNLL 2007 shared task on depen-
dency parsing. In Figure 3, we plot, for all pairs,
the gain in unlabeled dependency accuracy against
confidence on the CoNLL 2007 Chinese test set,
which consists of 690 sentences and parses. We
again separate comparisons between systems sub-
mitted by the same research group and those submit-
ted by different groups, although for this task there
were fewer cases of multiple submission. The re-
sults resemble the plot for summarization; we again
see a curve-shaped trend, and comparisons between
systems from the same group (few that they are)
achieve higher confidences at lower metric gains.

3.1.3 WMT 2010 Machine Translation
Our final task for which system outputs are pub-

licly available is machine translation. We run an ex-
periment using the outputs of the 31 systems par-
ticipating in WMT 2010 on the system combination
portion of the German-English WMT 2010 news test
set, which consists of 2,034 German sentences and
English translations. We again run comparisons for
pairs of participating systems. We plot gain in test
BLEU score against confidence in Figure 4. In this
experiment there is an additional class of compar-
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4.2 Empirical Calibration across Domains

Now that we have a way of generating outputs for
thousands of pairs of systems, we can check empir-
ically the practical reliability of significance testing.
Recall that the bootstrap p-value(x) is an approxi-
mation to p(�(X) > �(x)|H0). However, we often
really want to determine the probability that the new
system is better than the baseline on the underlying
test distribution or even the distribution from another
domain. There is no reason a priori to expect these
numbers to coincide.

In our next experiment, we treat the entire Brown
corpus, which consists of 24K sentences, as the true
population of English sentences. For each system
generated in the way described in Section 3.2.5 we
compute F1 on all of Brown. Since we are treat-
ing the Brown corpus as the actual population of En-
glish sentences, for each pair of parsers we can say
that the sign of the F1 difference indicates which is
the truly better system. Now, we repeatedly resam-
ple small test sets from Brown, each consisting of
1,600 sentences, drawn by sampling sentences with
replacement. For each pair of systems, and for each
resampled test set, we compute p-value(x) using the
bootstrap. Out of the 4K bootstraps computed in this
way, 942 had p-value between 0.04 and 0.06, 869
of which agreed with the sign of the F1 difference
we saw on the entire Brown corpus. Thus, 92% of
the significance tests with p-value in a tight range
around 0.05 correctly identified the better system.

This result is encouraging. It suggests that sta-
tistical significance computed using the bootstrap is
reasonably well calibrated. However, test sets are
almost never drawn i.i.d. from the distribution of in-
stances the system will encounter in practical use.
Thus, we also wish to compute how calibration de-
grades as the domain of the test set changes. In an-
other experiment, we look at how significance near
p-value = 0.05 on section 23 of the WSJ corpus
predicts performance on sections 22 and 24 and the
Brown corpus. This time, for each pair of generated
systems we run a bootstrap on section 23. Out of
all these bootstraps, 58 system pairs had p-value be-
tween 0.04 and 0.06. Of these, only 83% had the
same sign of F1 difference on section 23 as they did
on section 22, 71% the had the same sign on sec-
tion 23 as on section 24, and 48% the same sign on

Sec. 23 p-value % Sys. A > Sys. B
Sec. 22 Sec. 24 Brown

0.00125 - 0.0025 97% 95% 73%
0.0025 - 0.005 92% 92% 60%
0.005 - 0.01 92% 85% 56%
0.01 - 0.02 88% 92% 54%
0.02 - 0.04 87% 78% 51%
0.04 - 0.08 83% 74% 48%

Table 1: Empirical calibration: p-value on section 23 of the
WSJ corpus vs. fraction of comparisons where system A beats
system B on section 22, section 24, and the Brown corpus. Note
that system pairs are ordered so that A always outperforms B on
section 23.

section 23 as on the Brown corpus. This indicates
that reliability degrades as we switch the domain. In
the extreme, achieving a p-value near 0.05 on sec-
tion 23 provides no information about performance
on the Brown corpus.

If we intend to use our system on out-of-domain
data, these results are somewhat discouraging. How
low does p-value(x) have to get before we start get-
ting good information about out-of-domain perfor-
mance? We try to answer this question for this par-
ticular parsing task by running the same domain cal-
ibration experiment for several different ranges of
p-value. The results are shown in Table 1. From
these results, it appears that for constituency pars-
ing, when testing on section 23, a p-value level be-
low 0.00125 is required to reasonably predict perfor-
mance on the Brown corpus.

It should be considered a good practice to include
statistical significance testing results with empiri-
cal evaluations. The bootstrap in particular is easy
to run and makes relatively few assumptions about
the task or evaluation metric. However, we have
demonstrated some limitations of statistical signifi-
cance testing for NLP. In particular, while statistical
significance is usually a minimum necessary condi-
tion to demonstrate that a performance difference is
real, it’s also important to consider the relationship
between test set performance and the actual goals
of the systems being tested, especially if the system
will eventually be used on data from a different do-
main than the test set used for evaluation.

5 Conclusion
We have demonstrated trends relating several im-
portant factors to significance level, which include

Tuesday, February 27, 18



• Statistical significance != practical significance

• CI width, statistical power, data size

• Many other confounds we don’t have models 
for, but know can be very significant

• Researcher bias

• File-drawer bias

• Generalization (e.g. across domains)

• Tuning on test sets

• Reusing test set over multiple papers
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