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Statistical variability in NLP

® How to trust experiment results, given many
sources of variability!
® How was the text data sampled!?
® How were the annotations sampled!?

® How variably do the human annotators behave!?

® How variable are the computational algorithms!?
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Computational variability

® Randomness in algorithm!?
® Arbitrariness in hyperparameters!?
® Options to control

® Maximize settings on development data
® Average over randomness
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Randomness in learning algo.

Figure 1:
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Histogram of test set BLEU scores for the

BTEC phrase-based system (left) and BTEC hierarchical
system (right). While the difference between the systems
1s 1.5 BLEU in expectation, there 1s a non-trivial region
of overlap indicating that some random outcomes will re-
sult 1n little to no difference being observed.
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[Dyer et al. 201 1]
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Randomness in learning algo.
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Figure 2: Relative frequencies of obtaining differences
in BLEU scores on the WMT system as a function of the
number of optimizer samples. The expected difference
1s 0.2 BLEU. While there 1s a reasonably high chance of
observing a non-trivial improvement (or even a decline)
for 1 sample, the distribution quickly peaks around the
expected value given just a few more samples.

: [Dyer et al. 201 1]
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Human variability




Human variability

® Linguistic/content annotations
are naturally variable and subjective

® |s this a positive or negative view of a product!
® |s this sentence grammatical?
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Human variability

® Linguistic/content annotations
are naturally variable and subjective

® |s this a positive or negative view of a product!
® |s this sentence grammatical?
® Does the task setup usefully get at the phenomenon?

® “[s this sentence grammatical” vs.
“Which of these two sentences is more grammatical?”

® TJypical measurement is via agreement rate between two human
annotators

® Training! Tiredness? Attention?
® Self-agreement! (psychometrics: test-retest correlation)
® Discrete data

® Agreement rate (accuracy)

® Cohen’s kappa: control for agreement due to chance (randomly
guessing the base rates)

® Real-valued data: correlation, rank correlation, MAE, etc.
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Text data variability

® Do results generalize to ....
new domains!

new authors?

new documents?

new sentences’

® (Typically things get worse if anything changes)
® Also of interest: even if only care about text

similar to our current one, did we “get lucky” in
our selection of sentences/documents/etc?
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Text data variability

® Mathematically, the easiest case to analyze:
What if we resampled the tokens/sentences/
documents from a similar population as our
current data sample?

® Assume units are sampled i.i.d.; then apply your
favorite statistical significance/confidence
interval testing technique

® T-tests, binomial tests
® Bootstrapping
® Paired tests
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Significance tests and Cls

® Given how small the data sample is, how much information do we
really have about the true parameter 0
® (e.g.accuracy if we could access the population)

® Null hypothesis testing / p-values:
chance of seeing as extreme/interesting result, given an uninteresting
null hypothesis

® Confidence intervals with A% confidence

® | Probability the true value is in this set

®  Bayesian interpretation; useful intuition, typically not used for experimental
results, but sometimes similar

® 2 Following this Cl inference algorithm, A% of all experiments will have
the true value contained within them
®  Frequentist interpretation

® (] view of null hypothesis testing:
e.g. Does the Cl not include zero!?
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Statistical tests

® (Closed-form tests
® t-tests, exact binomial test, chi-square tests....

® Bootstrapping: very flexible!
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