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Statistical variability in NLP

• How to trust experiment results, given many 
sources of variability?

• How was the text data sampled?

• How were the annotations sampled?

• How variably do the human annotators behave?

• How variable are the computational algorithms?
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Computational variability

• Randomness in algorithm?

• Arbitrariness in hyperparameters?

• Options to control

• Maximize settings on development data

• Average over randomness
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Randomness in learning algo.

4

optimizer samples, we have a statistic that jointly
quantifies the impact of test set effects and optimizer
instability on a test set. We call this statistic ssel.
Different values of this statistic can suggest method-
ological improvements. For example, a large ssel in-
dicates that more replications will be necessary to
draw reliable inferences from experiments on this
test set, so a larger test set may be helpful.

To compute ssel, assume we have n indepen-
dent optimization runs which produced weight vec-
tors that were used to translate a test set n times.
The test set has � segments with references R =
�R1, R2, . . . , R��. Let X = �X1, X2, . . . , Xn�
where each Xi = �Xi1, Xi2, . . . ,Xi�� is the list of
translated segments from the ith optimization run
list of the � translated segments of the test set. For
each hypothesis output Xi, we construct k bootstrap
replicates by drawing � segments uniformly, with re-
placement, from Xi, together with its corresponding
reference. This produces k virtual test sets for each
optimization run i. We designate the score of the jth
virtual test set of the ith optimization run with mij .
If mi = 1

k

�k
j=1 mij , then we have:

si =

����
k�

j=1

(mij � mi)2

k � 1
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1
n
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i=1

si

4.2 Comparing Two Systems
In the previous section, we gave statistics about
the distribution of evaluation metrics across a large
number of experimental samples (Table 1). Because
of the large number of trials we carried out, we can
be extremely confident in concluding that for both
pairs of systems, the experimental manipulation ac-
counts for the observed metric improvements, and
furthermore, that we have a good estimate of the
magnitude of that improvement. However, it is not
generally feasible to perform as many replications
as we did, so here we turn to the question of how
to compare two systems, accounting for optimizer
noise, but without running 300 replications.

We begin with a visual illustration how opti-
mizer instability affects test set scores when com-
paring two systems. Figure 1 plots the histogram
of the 300 optimizer samples each from the two
BTEC Chinese-English systems. The phrase-based

Figure 1: Histogram of test set BLEU scores for the
BTEC phrase-based system (left) and BTEC hierarchical
system (right). While the difference between the systems
is 1.5 BLEU in expectation, there is a non-trivial region
of overlap indicating that some random outcomes will re-
sult in little to no difference being observed.

Figure 2: Relative frequencies of obtaining differences
in BLEU scores on the WMT system as a function of the
number of optimizer samples. The expected difference
is 0.2 BLEU. While there is a reasonably high chance of
observing a non-trivial improvement (or even a decline)
for 1 sample, the distribution quickly peaks around the
expected value given just a few more samples.

system’s distribution is centered at the sample
mean 48.4, and the hierarchical system is centered
at 49.9, a difference of 1.5 BLEU, correspond-
ing to the widely replicated result that hierarchi-
cal phrase-based systems outperform conventional
phrase-based systems in Chinese-English transla-
tion. Crucially, although the distributions are dis-
tinct, there is a non-trivial region of overlap, and
experimental samples from the overlapping region
could suggest the opposite conclusion!

To further underscore the risks posed by this over-
lap, Figure 2 plots the relative frequencies with
which different BLEU score deltas will occur, as a
function of the number of optimizer samples used.

When is a difference significant? To determine
whether an experimental manipulation results in a
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Human variability
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Human variability
• Linguistic/content annotations

are naturally variable and subjective

• Is this a positive or negative view of a product?

• Is this sentence grammatical?
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Human variability
• Linguistic/content annotations

are naturally variable and subjective

• Is this a positive or negative view of a product?

• Is this sentence grammatical?

• Does the task setup usefully get at the phenomenon?

• “Is this sentence grammatical” vs.
“Which of these two sentences is more grammatical?”

• Typical measurement is via agreement rate between two human 
annotators

• Training?  Tiredness?  Attention?

• Self-agreement? (psychometrics: test-retest correlation)

• Discrete data

• Agreement rate (accuracy)

• Cohen’s kappa: control for agreement due to chance (randomly 
guessing the base rates)

• Real-valued data: correlation, rank correlation, MAE, etc.
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Text data variability

• Do results generalize to ....

• new domains?

• new authors?

• new documents?

• new sentences?

• (Typically things get worse if anything changes)

• Also of interest:  even if only care about text 
similar to our current one, did we “get lucky” in 
our selection of sentences/documents/etc?
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Text data variability

• Mathematically, the easiest case to analyze:
What if we resampled the tokens/sentences/
documents from a similar population as our 
current data sample?

• Assume units are sampled i.i.d.; then apply your 
favorite statistical significance/confidence 
interval testing technique

• T-tests, binomial tests

• Bootstrapping

• Paired tests
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Significance tests and CIs
• Given how small the data sample is, how much information do we 

really have about the true parameter θ
• (e.g. accuracy if we could access the population)

• Null hypothesis testing / p-values:
chance of seeing as extreme/interesting result, given an uninteresting 
null hypothesis

• Confidence intervals with A% confidence

• 1. Probability the true value is in this set

• Bayesian interpretation; useful intuition, typically not used for experimental 
results, but sometimes similar

• 2. Following this CI inference algorithm, A% of all experiments will have 
the true value contained within them

• Frequentist interpretation

• CI view of null hypothesis testing: 
e.g. Does the CI not include zero?
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Statistical tests

• Closed-form tests

• t-tests, exact binomial test, chi-square tests....

• Bootstrapping: very flexible!
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