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Singular Value Decomposition learns E,B
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L ocal models
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(a) Continuous bag-of-words (CBOW)

o CBOWV:faster
® Skip-grams: work better
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(b) Skipgram

(because more like context matrix factorization?)
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Skip-gram model
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® [Mikolov et al. 2013]

® In word2vec. Learning: SGD under a contrastive sampling approximation
of the objective

® Levy and Goldberg: mathematically similar to factorizing a PMI(w,c)
matrix; advantage is streaming, etc. (though see Arora et al.’s followups...)

® Practically: very fast open-source implementation
® Variations: enrich contexts
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Skip-gram model
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[Mikolov et al. 201 3]

In word2vec. Learning: SGD under a contrastive sampling approximation
of the objective

Levy and Goldberg: mathematically similar to factorizing a PMI(w;c)
matrix; advantage is streaming, etc. (though see Arora et al.’s followups...)

Practically: very fast open-source implementation
Variations: enrich contexts
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Dealing with large output vocab

® Hierarchical softmax

® Helps to have a good hierarchy: for example, Brown
clusters work well. Or less expensive alternatives

i @ o

o(ug - v;)
whale blubber

o(—ug - v:) X o(ug - V) o(—ug - V) X o(—usg - v.)

Figure 13.4: A fragment of a hierarchical softmax tree. The probability of each word is
computed as a product of probabilities of local branching decisions in the tree.
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® Negative sampling
® Choose negative set somehow -- e.g.a (rescaled)
unigram language model (2-5? 5-20? samples)
® [evy and Goldberg show equivalence to word-
context matrix factorization, where matrix cells
are:

Mij — max((), PMI(Z,]) — log k‘)

Thursday, February 22, 18



® “Distributional / Word Embedding” models

® TJypically, they learn embeddings to be good at word-
context factorization,
which seems to often give useful embeddings

® Pre-trained embeddings resources

® GLOVE, wordZ2vec, etc.

® Make sure it’s trained on a corpus sufficiently similar
to what you care about!

® How to use!

® Fixed (or initializations) for word embedding model
parameters

® Similarity lookups
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Extensions

® Alternative: Task-specific embeddings (always better...)
® Multilingual embeddings

® Better contexts: direction, syntax, morphology /
characters...

® Phrases and meaning composition

® vector(hardly awesome) =
g(vector(hardly), vector(awesome))
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