
Distributional semantics (II)

CS 690N, Spring 2018
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Thursday, February 22, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

Matrix factorization

9

w
or

ds

contexts

V
(counts)

≈

E
(embeddings)

B≈

latent dims
contexts

la
te

nt
 d

im
s

V T
i Vj ⇡ ET

i Ej
Vi,c ⇡

X

k

Ei,kBk,c

Reconstruct the co-occurrence matrix Preserve pairwise distances
between words i, j

Singular Value Decomposition learns E,B
(or other matrix factorization techniques)

Eigen Decomposition learns E

Thursday, February 22, 18

Local models

• CBOW: faster

• Skip-grams: work better
(because more like context matrix factorization?)

3

13.5. NEURAL WORD EMBEDDINGS 325

vw
m�2 vw

m�1 vm vw
m+1 vw

m+2

wm�2

wm�1

wm wm+1

wm+2

U

(a) Continuous bag-of-words (CBOW)

v

wm

w
m�2 w

m�1 w
m

w
m+1 w

m+2

U

(b) Skipgram

Figure 13.3: The CBOW and skipgram variants of WORD2VEC. The parameter U is the
matrix of word embeddings, and each vm is the context embedding for word wm.

embedding for word i, and let vj represent the K-dimensional embedding for context
j. The inner product ui · vj represents the compatibility between word i and context j.
By incorporating this inner product into an approximation to the log-likelihood of a cor-
pus, it is possible to estimate both parameters by backpropagation. WORD2VEC (Mikolov
et al., 2013) includes two such approximations: continuous bag-of-words (CBOW) and
skipgrams.

13.5.1 Continuous bag-of-words (CBOW)

In recurrent neural network language models, each word wm is conditioned on a recurrently-
updated state vector, which is based on word representations going all the way back to the
beginning of the text. The continuous bag-of-words (CBOW) model is a simplification:
the local context is computed as an average of embeddings for words in the immediate
neighborhood m � h, m � h + 1, . . . , m + h � 1, m + h,

vm =
1

2h

hX
n=1

vm+n + vm�n. [13.13]

Thus, CBOW is a bag-of-words model, because the order of the context words does not
matter; it is continuous, because rather than conditioning on the words themselves, we
condition on a continuous vector constructed from the word embeddings. The parameter
h determines the neighborhood size, which Mikolov et al. (2013) set to h = 4.

(c) Jacob Eisenstein 2018. Work in progress.

Thursday, February 22, 18

Skip-gram model

• [Mikolov et al. 2013]

• In word2vec. Learning: SGD under a contrastive sampling approximation
of the objective

• Levy and Goldberg: mathematically similar to factorizing a PMI(w,c)
matrix; advantage is streaming, etc. (though see Arora et al.‘s followups...)

• Practically: very fast open-source implementation

• Variations: enrich contexts

4

270 CHAPTER 15. DISTRIBUTIONAL AND DISTRIBUTED SEMANTICS

subject to the constraints above. This means that U
K

,S
K

,V
K

give the rank-K matrix X̃

that minimizes the Frobenius norm,
qP

i,j

(x
i,j

� x̃
i,j

)2.
This factorization is called the Truncated Singular Value Decomposition, and is closely

related to eigenvalue decomposition of the matrices XX> and X>X. In general, the com-
plexity of SVD is min

�O(D2V), O(V 2N)
�
. The standard library LAPACK (Linear Algebra

PACKage) includes an iterative optimization solution for SVD, and (I think) this what is
called by Matlab and Numpy.

However, for large sparse matrices it is often more efficient to take a stochastic gradient
approach. Each word-context observation hw, ci gives a gradient on u

w

, v
c

, and S, so we
can take a gradient step. This is part of the algorithm that was used to win the Netflix
challenge for predicting movie recommendation — in that case, the matrix includes raters
and movies (Koren et al., 2009).

Return to NLP applications, the slides provide a nice example from Deerwester et al.
(1990), using the titles of computer science research papers. In the example, the context-
vector representations of the terms user and human have negative correlations, yet their
distributional representations have high correlation, which is appropriate since these terms
have roughly the same meaning in this dataset.

Word vectors and neural word embeddings

Discriminatively-trained word embeddings very hot area in NLP. The idea is to replace
factorization approaches with discriminative training, where the task may be to predict
the word given the context, or the context given the word.

Suppose we have the word w and the context c, and we define

u
✓

(w, c) = exp
⇣
a

>
w

b

c

⌘
(15.14)

(15.15)

with a

w

2 RK and b

c

2 RK . The vector a

w

is then an embedding of the word w,
representing its properties. We are usually less interested in the context vector b; the
context can include surrounding words, and the vector b

c

is often formed as a sum of
context embeddings for each word in a window around the current word. Mikolov et al.
(2013a) draw the size of this context as a random number r.

The popular word2vec software3 uses these ideas in two different types of models:

Skipgram model In the skip-gram model (Mikolov et al., 2013a), we try to maximize the
log-probability of the context,

3https://code.google.com/p/word2vec/

(c) Jacob Eisenstein 2014-2017. Work in progress.

15.3. DISTRIBUTED REPRESENTATIONS 271

J =
1

M

X

m

X

�cjc,j 6=0

log p(w
m+j

| w
m

) (15.16)

p(w
m+j

| w
m

) =
u
✓

(w
m+j

, w
m

)P
w

0 u
✓

(w0, w
m

)
(15.17)

=
u
✓

(w
m+j

, w
m

)

Z(w
m

)
(15.18)

This model is considered to be slower to train, but better for rare words.

CBOW The continuous bag-of-words (CBOW) (Mikolov et al., 2013b,c) is more like a
language model, since we predict the probability of words given context.

J =
1

M

X

m

log p(w
m

| c) (15.19)

=
1

M

X

m

log u
✓

(w
m

, c) � log Z(c) (15.20)

u
✓

(w
m

, c) = exp

0

@
X

�cjc,j 6=0

a

>
w

m

b

w

m+j

1

A (15.21)

The CBOW model is faster to train (Mikolov et al., 2013a). One efficiency improve-
ment is build a Huffman tree over the vocabulary, so that we can compute a hier-
archical version of the softmax function with time complexity O(log V) rather than
O(V). Mikolov et al. (2013a) report two-fold speedups with this approach.

The recurrent neural network language model (section 5.3) is still another way to com-
pute word representations. In this model, the context is summarized by a recurrently-
updated state vector c

m

= f(⇥c

m�1

+ Ux

m

), where ⇥ 2 RK⇥K defines a the recurrent
dynamics, U 2 RK⇥V defines “input embeddings” for each word, and f(·) is a non-linear
function such as tanh or sigmoid. The word distribution is then,

P (W
m+1

= i | c
m

) =
exp

�
c

>
m

v

i

�
P

i

0 exp (c>
m

v

i

0)
, (15.22)

where v

i

is the “output embedding” of word i.

(c) Jacob Eisenstein 2014-2017. Work in progress.

Thursday, February 22, 18

Skip-gram model

5

326 CHAPTER 13. DISTRIBUTIONAL AND DISTRIBUTED SEMANTICS

The CBOW model optimizes an approximation to the corpus log-likelihood,

log p(w) ⇡
MX

m=1

log p(wm | wm�h, wm�h+1

, . . . , wm+h�1

, wm+h) [13.14]

=

MX
m=1

log
exp (uw

m

· vm)PV
j=1

exp (ui · vm)
[13.15]

=

MX
m=1

uw
m

· vm � log

VX
j=1

exp (ui · vm) . [13.16]

13.5.2 Skipgrams

In the CBOW model, words are predicted from their context. In the skipgram model, the
context is predicted from the word, yielding the objective:

log p(w) ⇡
MX

m=1

h
mX

n=1

log p(wm�n | wm) + log p(wm+n | wm) [13.17]

=
MX

m=1

h
mX

n=1

log
exp(uw

m�n

· vw
m

)PV
j=1

exp(ui · vw
m

)
+ log

exp(uw
m+n

· vw
m

)PV
j=1

exp(ui · vw
m

)
[13.18]

=
MX

m=1

h
mX

n=1

uw
m�n

· vw
m

+ uw
m+n

· vw
m

� 2 log
VX
j=1

exp (ui · vw
m

) . [13.19]

In the skipgram approximation, each word is generated multiple times; each time it is con-
ditioned only on a single word. This makes it possible to avoid averaging the word vec-
tors, as in the CBOW model. The local neighborhood size hm is randomly sampled from
a uniform categorical distribution over the range {1, 2, . . . , hmax}; Mikolov et al. (2013) set
hmax = 10. Because the neighborhood grows outward with h, this approach has the effect
of weighting near neighbors more than distant ones. Skipgram performs better on most
evaluations than CBOW (see § 13.6 for details of how to evaluate word representations),
but CBOW is faster to train Mikolov et al. (2013).

13.5.3 Computational complexity

The WORD2VEC models can be viewed as an efficient alternative to recurrent neural net-
work language models, which involves a recurrent state update whose time complexity
is quadratic in the size of the recurrent state vector. CBOW and skipgram avoid this
computation, and incur only a linear time complexity in the size of the word and con-
text representations. However, all three models compute a normalized probability over

(c) Jacob Eisenstein 2018. Work in progress.

• [Mikolov et al. 2013]

• In word2vec. Learning: SGD under a contrastive sampling approximation
of the objective

• Levy and Goldberg: mathematically similar to factorizing a PMI(w,c)
matrix; advantage is streaming, etc. (though see Arora et al.‘s followups...)

• Practically: very fast open-source implementation

• Variations: enrich contexts

Thursday, February 22, 18

Dealing with large output vocab

• Hierarchical softmax

• Helps to have a good hierarchy: for example, Brown
clusters work well. Or less expensive alternatives

6

13.5. NEURAL WORD EMBEDDINGS 327

0

1 2

3 4Ahab

�(u0 · v
c

)
whale

�(�u0 · v
c

) ⇥ �(u2 · v
c

)
blubber

�(�u0 · v
c

) ⇥ �(�u2 · v
c

)

Figure 13.4: A fragment of a hierarchical softmax tree. The probability of each word is
computed as a product of probabilities of local branching decisions in the tree.

word tokens; a naı̈ve implementation of this probability requires summing over the en-
tire vocabulary. The time complexity of this sum is O(V ⇥ K), which dominates all other
computational costs. There are two solutions: hierarchical softmax, a tree-based com-
putation that reduces the cost to a logarithm of the size of the vocabulary; and negative
sampling, an approximation that eliminates the dependence on vocabulary size. Both of
these methods are also applicable to RNN language models.

Hierarchical softmax

In Brown clustering, the vocabulary is organized into a binary tree. Mnih and Hin-
ton (2008) show that the normalized probability over words in the vocabulary can be
reparametrized as a probability over paths through such a tree. This hierarchical softmax
probability is computed as a product of binary decisions over whether to move left or
right through the tree, with each binary decision represented as a sigmoid function of the
inner product between the context embedding vc and an output embedding associated
with the node un,

Pr(left at n | c) =�(un · vc) [13.20]
Pr(right at n | c) =1 � �(un · vc) = �(�un · vc), [13.21]

where � refers to the sigmoid function, �(x) = 1

1+exp(�x) . The range of the sigmoid is the
interval (0, 1), and 1 � �(x) = �(�x).

As shown in Figure 13.4, the probability of generating each word is redefined as the
product of the probabilities across its path. The sum of such probabilities is guaranteed to
be one, for any context vector vc 2 RK . In a balanced binary tree, the depth is logarithmic
in the number of leaf nodes, and thus the number of multiplications is equal to O(log V).
The number of non-leaf nodes is equal to O(2V � 1), so the number of parameters to be
estimated increases by only a small multiple. The tree can be constructed using an in-
cremental clustering procedure similar to hierarchical Brown clusters (Mnih and Hinton,

(c) Jacob Eisenstein 2018. Work in progress.

Thursday, February 22, 18

• Negative sampling

• Choose negative set somehow -- e.g. a (rescaled)
unigram language model (2-5? 5-20? samples)

• Levy and Goldberg show equivalence to word-
context matrix factorization, where matrix cells
are:

7

328 CHAPTER 13. DISTRIBUTIONAL AND DISTRIBUTED SEMANTICS

2008), or by using the Huffman (1952) encoding algorithm for lossless compression (Huff-
man, 1952).

Negative sampling

Likelihood-based methods are computationally intensive because each probability must
be normalized over the vocabulary. These probabilities are based on scores for each word
in each context, and it is possible to design an alternative objective that is based on these
scores more directly: we seek word embeddings that maximize the difference between
the score for the word that was really observed in each context, and the scores for a set of
randomly selected negative samples:

 (i, j) = log �(ui · vj) +
X

i02Wneg

log(1 � �(ui0 · vj)), [13.22]

where (i, j) is the score for word i in context j, � refers to the sigmoid function, and
Wneg is the set of negative samples.The objective is to maximize the sum over the corpus,PM

m=1

 (wm, cm), where wm is token m and cm is the associated context.

The set of negative samples Wneg is obtained by sampling from a unigram language
model. Mikolov et al. (2013) construct this unigram language model by exponentiating
the empirical word probabilities, setting p̂(i) / (count(i))

3
4 . This has the effect of redis-

tributing probability mass from common to rare words. The number of negative samples
increases the time complexity of training by a constant factor. Mikolov et al. (2013) report
that 5-20 negative samples works for small training sets, and that two to five samples
suffice for larger corpora.

13.5.4 Word embeddings as matrix factorization

The negative sampling objective in Equation 13.22 can be justified as an efficient approx-
imation to the log-likelihood, but it is also closely linked to the matrix factorization ob-
jective employed in latent semantic analysis. For a matrix of word-context pairs in which
all counts are non-zero, negative sampling is equivalent to factorization of the matrix M,
where Mij = PMI(i, j) � log k: each cell in the matrix is equal to the pointwise mutual
information of the word and context, shifted by log k, with k equal to the number of neg-
ative samples (Levy and Goldberg, 2014). For word-context pairs that are not observed in
the data, the pointwise mutual information is �1, but this can be addressed by consid-
ering only PMI values that are greater than log k, resulting in a matrix of shifted positive
pointwise mutual information,

Mij = max(0, PMI(i, j) � log k). [13.23]

Word embeddings are obtained by factoring this matrix with truncated singular value
decomposition.

(c) Jacob Eisenstein 2018. Work in progress.

328 CHAPTER 13. DISTRIBUTIONAL AND DISTRIBUTED SEMANTICS

2008), or by using the Huffman (1952) encoding algorithm for lossless compression (Huff-
man, 1952).

Negative sampling

Likelihood-based methods are computationally intensive because each probability must
be normalized over the vocabulary. These probabilities are based on scores for each word
in each context, and it is possible to design an alternative objective that is based on these
scores more directly: we seek word embeddings that maximize the difference between
the score for the word that was really observed in each context, and the scores for a set of
randomly selected negative samples:

 (i, j) = log �(ui · vj) +
X

i02Wneg

log(1 � �(ui0 · vj)), [13.22]

where (i, j) is the score for word i in context j, � refers to the sigmoid function, and
Wneg is the set of negative samples.The objective is to maximize the sum over the corpus,PM

m=1

 (wm, cm), where wm is token m and cm is the associated context.

The set of negative samples Wneg is obtained by sampling from a unigram language
model. Mikolov et al. (2013) construct this unigram language model by exponentiating
the empirical word probabilities, setting p̂(i) / (count(i))

3
4 . This has the effect of redis-

tributing probability mass from common to rare words. The number of negative samples
increases the time complexity of training by a constant factor. Mikolov et al. (2013) report
that 5-20 negative samples works for small training sets, and that two to five samples
suffice for larger corpora.

13.5.4 Word embeddings as matrix factorization

The negative sampling objective in Equation 13.22 can be justified as an efficient approx-
imation to the log-likelihood, but it is also closely linked to the matrix factorization ob-
jective employed in latent semantic analysis. For a matrix of word-context pairs in which
all counts are non-zero, negative sampling is equivalent to factorization of the matrix M,
where Mij = PMI(i, j) � log k: each cell in the matrix is equal to the pointwise mutual
information of the word and context, shifted by log k, with k equal to the number of neg-
ative samples (Levy and Goldberg, 2014). For word-context pairs that are not observed in
the data, the pointwise mutual information is �1, but this can be addressed by consid-
ering only PMI values that are greater than log k, resulting in a matrix of shifted positive
pointwise mutual information,

Mij = max(0, PMI(i, j) � log k). [13.23]

Word embeddings are obtained by factoring this matrix with truncated singular value
decomposition.

(c) Jacob Eisenstein 2018. Work in progress.

Thursday, February 22, 18

• “Distributional / Word Embedding” models

• Typically, they learn embeddings to be good at word-
context factorization,
which seems to often give useful embeddings

• Pre-trained embeddings resources

• GLOVE, word2vec, etc.

• Make sure it’s trained on a corpus sufficiently similar
to what you care about!

• How to use?

• Fixed (or initializations) for word embedding model
parameters

• Similarity lookups

8

Thursday, February 22, 18

Extensions

• Alternative: Task-specific embeddings (always better...)

• Multilingual embeddings

• Better contexts: direction, syntax, morphology /
characters...

• Phrases and meaning composition

• vector(hardly awesome) =
g(vector(hardly), vector(awesome))

9

Thursday, February 22, 18

