Distributional lexical semantics (I)

CS 690N, Spring 2018

Advanced Natural Language Processing http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

- Lexical resources are good (e.g. WordNet or name lists)
 - But hand-built ones are hard to create/maintain
- "You shall know a word by the company it keeps (Firth, 1957)
 - (15.1) A bottle of _____ is on the table.
 - (15.2) *Everybody likes* _____.
 - (15.3) Don't have _____ before you drive.
 - (15.4) *We make _____ out of corn.*

		C1	C2	C3	C4	•••
	tezgüino	1	1	1	1	
Word-context matrix	loud	0	0	0	0	
(derived from counts;	motor oil	1	0	0	1	
e.g. Pos. PMI)	tortillas	0	1	0	1	
	choices	0	1	0	0	
	wine	1	1	1	1	

- Context representation
 - Word windows
 - Directionality
 - Syntactic context
- What to do with context counts
 - Sparse, original form (rescaled: PPMI)
 - Dimension reduction: SVD or log-bilinear models (word2vec)
 - Model-based approaches
 - Markov-ish: Saul&Pereira
 - HMM-ish: Brown clustering

Features from unsup. learning

- Generative models allow unsupervised learning; can use as features
 - Baum-Welch algo.: unsup. HMM via EM (its categories seem to disagree with parts of speech)
- Brown word clustering [Brown et al. 1992]
 - HMM + one-class constraint: Every word belongs to only one class (bad assumption, but better than alternative; [Blunsom et al. 2011])
 - Why HMM learning looks like distributional clustering [whiteboard]
 - Agglomerative clustering: yields binary tree over clusters
 - alternative: agglom cluster in word embedding space?
 - Compare to using word embeddings as linear features: allows multiresolutional generalizations
 - Very useful as CRF features for POS, NER [Turian et al. 2010, Derczynski et al. 2015] http://www.derczynski.com/sheffield/brown-tuning/

Word clusters as features

- Labeled data is small and sparse. Lexical generalization via induced word classes.
 - Both embeddings and clusters can be used as features!
- Examples from Twitter, for POS tagging
 - Unlabeled: 56 M tweets, 847 M tokens
 - Labeled: 2374 tweets, 34k tokens
- 1000 clusters over 217k word types
 - Preprocessing: discard words that occur < 40 times

[Owoputi et al. 2013]

http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html

What does it learn?

Orthographic normalizations

so s0 -so so- \$o /so //so

suggests joint model for morphology/spelling

6

• Emoticons etc.

(Clusters/tagger useful for sentiment analysis: NRC-Canada SemEval 2013, 2014)

(Immediate?) future auxiliaries

gonna gunna gona gna guna gnna ganna qonna gonna gana qunna gonne goona gonnaa g0nna goina gonnah goingto gunnah gonaa gonan gunnna going2 gonnna gunnaa gonny gunaa quna goonna qona gonns goinna gonnae qnna gonnaaa gnaa

tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon boutaa funna finnah bouda boutah abouta fena bouttah boudda trinna qne finnaa fitna aboutta goin2 bout2 finnna trynah finaa ginna bouttaa fna try'na g0n trynn tyrna trna bouto finsta fnna tranna finta tryinna finnuh tryingto boutto

- finna ~ "fixing to"
- tryna ~ "trying to"
- bouta ~ "about to"

Subject-AuxVerb constructs

Word clusters as features

ikr	smh	he	asked	fir	yo	last
	G	O	V	P	D	A
name	so	he	can	add	u	on
N	P	O	V	V	O	P
fb ∧	lololol !					

w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains"non-standard
prepositions"yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo"interjections"facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora"online service
names"smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying"hashtag-y
interjections"?

Highest-weighted POS-treenode features hierarchical structure generalizes nicely.

Cluster prefix	Tag	Types	Most common word in each cluster with prefix
11101010*	!	8160	lol Imao haha yes yea oh omg aww ah btw wow thanks sorry congrats welcome yay ha hey goodnight hi dear please huh wtf exactly idk bless whatever well ok
11000*	L	428	i'm im you're we're he's there's its it's
1110101100*	E	2798	x <3 :d :p :) :o :/
111110*	A	6510	young sexy hot slow dark low interesting easy important safe perfect special different random short quick bad crazy serious stupid weird lucky sad
1101*	D	378	the da my your ur our their his
01*	V	29267	do did kno know care mean hurts hurt say realize believe worry understand forget agree remember love miss hate think thought knew hope wish guess bet have
11101*	0	899	you yall u it mine everything nothing something anyone someone everyone nobody
100110*	&	103	or n & and

Clusters help POS tagging

Test set accuracy

Clusters help POS tagging

(shape, regexes, char ngrams)

Test set accuracy

Clusters help POS tagging

all handcrafted features (shape, regexes, char ngrams)

Test set accuracy

Dev set accuracy using only clusters as features

Number of Unlabeled Tweets

12

Direct context approach

- Goal: pairwise similarities
 - Rank nearest neighbors
 - Agglomerative clustering
- I. Context representation
- 2. Rescaling (if want real-valued). PPMI is popular
 - PPMI(w,c) = max(0, PMI(w,c))
- 3. Similarity metric
 - Cosine similarity (and other L2-ish metrics)
 - Jaccard or Dice similarity (boolean-valued...)
 - Mutual information, etc...

Lin (1998)

- Syntactic contexts (e.g. C -dobj>W)
- Direct context similarity

Nouns			Adjective/Adverbs			
Rank	Respective Nearest Neighbors	Similarity	Rank	Respective Nearest Neighbors	Similarity	
1	earnings profit	0.572525	1	high low	0.580408	
11	plan proposal	0.47475	11	bad good	0.376744	
21	employee worker	0.413936	21	extremely very	0.357606	
31	battle fight	0.389776	31	deteriorating improving	0.332664	
41	airline carrier	0.370589	41	alleged suspected	0.317163	
51	share stock	0.351294	51	clerical salaried	0.305448	
61	rumor speculation	0.327266	61	often sometimes	0.281444	
71	outlay spending	0.320535	71	bleak gloomy	0.275557	
81	accident incident	0.310121	81	adequate inadequate	0.263136	
91	facility plant	0.284845	91	affiliated merged	0.257666	
101	charge count	0.278339	101	stormy turbulent	0.252846	
111	baby infant	0.268093	111	paramilitary uniformed	0.246638	
121	actor actress	0.255098	121	sharp steep	0.240788	
131	chance likelihood	0.248942	131	communist leftist	0.232518	
141	catastrophe disaster	0.241986	141	indoor outdoor	0.224183	
151	fine penalty	0.237606	151	changed changing	0.219697	
161	legislature parliament	0.231528	161	defensive offensive	0.211062	
171	oil petroleum	0.227277	171	sad tragic	0.206688	
181	strength weakness	0.218027	181	enormously tremendously	0.199936	
191	radio television	0.215043	191	defective faulty	0.193863	
201	coupe sedan	0.209631	201	concerned worried	0.186899	

Figure 15.3: Similar word pairs from the clustering method of Lin (1998)

- brief (noun): affidavit 0.13, petition 0.05, memorandum 0.05, motion 0.05, lawsuit 0.05, deposition 0.05, slight 0.05, prospectus 0.04, document 0.04 paper 0.04, ...
- brief (verb): tell 0.09, urge 0.07, ask 0.07, meet 0.06, appoint 0.06, elect 0.05, name 0.05, empower 0.05, summon 0.05, overrule 0.04, ...
- brief (adjective): lengthy 0.13, short 0.12, recent 0.09, prolonged 0.09, long 0.09, extended 0.09, daylong 0.08, scheduled 0.08, stormy 0.07, planned 0.06, ...
- Advantage of syntactic preprocessing: delineate syntactic-level word senses
 Lin (1998)

Latent space approach

- Reduce dimensionality
 - e.g. SVD. Prediction interp: from reduced dim space, best L2-minimizing predictions?
 - or: gradient learning for bilinear model
- Typically better than original context space
 - Denoising: low count contexts too noisy?
 - Generalization?
 - Computationally: smaller size (fit on phone...)

Learning Embeddings by Preserving Similarity

- Given long, sparse context cooccurrence vectors V_i and V_j
- Goal: Choose Embeddings E_i and E_j such that similarity is approximately preserved $V_i^{\top}V_j \approx E_i^{\top}E_j$

Use eigendecomposition / For all words jointly? singular value decomposition / matrix factorization

Skip-gram model

$$u_{\theta}(w,c) = \exp\left(\boldsymbol{a}_{w}^{\top}\boldsymbol{b}_{c}\right)$$
$$J = \frac{1}{M} \sum_{m} \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{m+j} \mid w_{m})$$
$$p(w_{m+j} \mid w_{m}) = \frac{u_{\theta}(w_{m+j}, w_{m})}{\sum_{w'} u_{\theta}(w', w_{m})}$$
$$= \frac{u_{\theta}(w_{m+j}, w_{m})}{Z(w_{m})}$$

- [Mikolov et al. 2013]
- In word2vec. Learning: SGD under a contrastive sampling approximation of the objective
- Levy and Goldberg: mathematically similar to factorizing a PMI(w,c) matrix; advantage is streaming, etc. (though see Arora et al.'s followups...)
- Practically: very fast open-source implementation
- Variations: enrich contexts

- "Distributional / Word Embedding" models
 - Typically, they learn embeddings to be good at wordcontext factorization, which seems to often give useful embeddings
- Pre-trained embeddings resources
 - *GLOVE*, *word2vec*, etc.
 - Make sure it's trained on a corpus sufficiently similar to what you care about!
- How to use?
 - Fixed (or initializations) for word embedding model parameters
 - Similarity lookups

Extensions

- Alternative: Task-specific embeddings (always better...)
- Multilingual embeddings
- Better contexts: direction, syntax, morphology / characters...
- Phrases and meaning composition
 - vector(hardly awesome) = g(vector(hardly), vector(awesome))