
Distributional lexical semantics (I)

CS 690N, Spring 2018
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Tuesday, February 20, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

• Lexical resources are good (e.g. WordNet or name lists)

• But hand-built ones are hard to create/maintain

• “You shall know a word by the company it keeps
(Firth, 1957)

2

Chapter 15

Distributional and distributed
semantics

A recurring theme in this course is that the mapping from words to meaning is complex.

Word sense disambiguation A single form, like bank, may have multiple meanings.

Synonymy Conversely, a single meaning may be created by multiple surface forms, as
represented by the synsets described in section 3.2

Paradigmatic relations Other lexical semantic relationships include antonymy (opposite
meaning), hyponymy (instance-of), and meronymy (part-whole)

Moreover, both compositional and frame semantics assume hand-crafted lexicons that
map from words to predicates. But how can we do semantic analysis of words that we’ve
never seen before?

15.1 The distributional hypothesis

Here’s a word you may not know: tezgüino. If we encounter this word, what can we do?
It seems like a big problem for any NLP system, from POS tagging to semantic analysis.

Suppose we see that tezgüino is used in the following contexts:1

(15.1) A bottle of is on the table.

(15.2) Everybody likes .

(15.3) Don’t have before you drive.

(15.4) We make out of corn.
1Example from Lin (1998).

261

262 CHAPTER 15. DISTRIBUTIONAL AND DISTRIBUTED SEMANTICS

What other words fit into these contexts? How about: loud, motor oil, tortillas, choices,
wine? We can create a vector for each word, based on whether it can be used in each
context.

C1 C2 C3 C4 ...
tezgüino 1 1 1 1
loud 0 0 0 0
motor oil 1 0 0 1
tortillas 0 1 0 1
choices 0 1 0 0
wine 1 1 1 1

Based on these vectors, it seems that:

• wine is very similar to tezgüino;

• motor oil and tortillas are fairly similar to tezgüino;

• loud is quite different.

The vectors describe the distributional properties of each word. Does vector similarity
imply semantic similarity? This is the distributional hypothesis, stated by Firth (1957)
as: “You shall know a word by the company it keeps.” It is also known as a vector-
space model, since each word’s meaning is captured by a vector. Vector-space models
and distributional semantics are relevant to a wide range of NLP applications.

Query expansion search for bike, match bicycle;

Semi-supervised learning use large unlabeled datasets to acquire features that are useful
in supervised learning;

Lexicon and thesaurus induction automatically expand hand-crafted lexical resources,
or induce them from raw text.

Vector-space models typically fill out the vector representation using contextual infor-
mation about each word, known as distributional statistics. In the example above, the
vectors are composed of binary values, indicating whether it is conceptually possible for a
word to appear in each context. But in real systems, we will compute distributional statis-
tics from corpora, using various definitions of context. This definition can have a major
impact on the lexical semantics that results; for example, Marco Baroni (lecture slides)
computes the thirty nearest neighbors of the word dog, based on the counts of all words
that appear within a fixed window of the target word. Varying the size of the window
yields quite different results:

2-word window cat, horse, fox, pet, rabbit, pig, animal, mongrel, sheep, pigeon

(c) Jacob Eisenstein 2014-2017. Work in progress.

Word-context matrix
(derived from counts;

e.g. Pos. PMI...)

Tuesday, February 20, 18

• Context representation

• Word windows

• Directionality

• Syntactic context

• What to do with context counts

• Sparse, original form (rescaled: PPMI)

• Dimension reduction: SVD or log-bilinear models
(word2vec)

• Model-based approaches

• Markov-ish: Saul&Pereira

• HMM-ish: Brown clustering

3

Tuesday, February 20, 18

Features from unsup. learning
• Generative models allow unsupervised learning;

can use as features

• Baum-Welch algo.: unsup. HMM via EM
(its categories seem to disagree with parts of speech)

• Brown word clustering [Brown et al. 1992]

• HMM + one-class constraint: Every word belongs to only one class
(bad assumption, but better than alternative;
[Blunsom et al. 2011])

• Why HMM learning looks like distributional clustering [whiteboard]

• Agglomerative clustering: yields binary tree over clusters

• alternative: agglom cluster in word embedding space?

• Compare to using word embeddings as linear features:
allows multiresolutional generalizations

• Very useful as CRF features for POS, NER
[Turian et al. 2010, Derczynski et al. 2015]
http://www.derczynski.com/sheffield/brown-tuning/

4

Tuesday, February 20, 18

http://www.derczynski.com/sheffield/brown-tuning/
http://www.derczynski.com/sheffield/brown-tuning/

Word clusters as features

• Labeled data is small and sparse. Lexical
generalization via induced word classes.

• Both embeddings and clusters can be used as
features!

• Examples from Twitter, for POS tagging

• Unlabeled: 56 M tweets, 847 M tokens

• Labeled: 2374 tweets, 34k tokens

• 1000 clusters over 217k word types

• Preprocessing: discard words that occur < 40 times

5

[Owoputi et al. 2013]
http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html

Tuesday, February 20, 18

http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html
http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html
http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html
http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html

What does it learn?

• Orthographic normalizations

6

soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo
sooooooooooo soooooooooooo sooooooooooooo soso soooooooooooooo
sooooooooooooooo soooooooooooooooo sososo superrr sooooooooooooooooo ssooo
so0o superrrr so0 soooooooooooooooooo sosososo sooooooooooooooooooo ssoo
sssooo soooooooooooooooooooo #too s0o ssoooo s00 sooooooooooooooooooooo
so0o0o sososososo soooooooooooooooooooooo sssoooo ssooooo superrrrr very2
s000 soooooooooooooooooooooooo sooooooooooooooooooooooooo
sooooooooooooooooooooooo _so_ soooooooooooooooooooooooooo /so/ sssooooo
sosososososo

so s0 -so so- $o /so //so

• suggests joint model for morphology/spelling

Tuesday, February 20, 18

• Emoticons etc.
(Clusters/tagger useful for sentiment analysis: NRC-Canada SemEval 2013, 2014)

Tuesday, February 20, 18

(Immediate?) future auxiliaries

8

gonna gunna gona gna guna gnna ganna qonna gonnna gana
qunna gonne goona gonnaa g0nna goina gonnah goingto
gunnah gonaa gonan gunnna going2 gonnnna gunnaa gonny
gunaa quna goonna qona gonns goinna gonnae qnna gonnaaa
gnaa

tryna gon finna bouta trynna boutta gne fina gonn tryina
fenna qone trynaa qon boutaa funna finnah bouda boutah
abouta fena bouttah boudda trinna qne finnaa fitna aboutta
goin2 bout2 finnna trynah finaa ginna bouttaa fna try'na g0n
trynn tyrna trna bouto finsta fnna tranna finta tryinna finnuh
tryingto boutto

• finna ~ “fixing to”

• tryna ~ “trying to”

• bouta ~ “about to”

Tuesday, February 20, 18

Subject-AuxVerb constructs

9

i'd you'd we'd he'd they'd she'd who'd i’d u'd youd you’d iwould theyd
icould we’d i`d #whydopeople he’d i´d #iusedto they’d i'ld she’d
#iwantsomeonewhowill i'de imust a:i'd you`d yu'd icud l'd

you'll we'll it'll he'll they'll she'll it'd that'll u'll that'd youll ull you’ll itll
there'll we’ll itd there'd theyll this'll thatd thatll they’ll didja he’ll it’ll
yu'll she’ll youl you`ll you'l you´ll yull u'l it'l we´ll we`ll didya that’ll
it’d he'l shit'll they'l theyl she'l everything'll he`ll things'll u’ll this'd

i'll i’ll i'l i`ll i´ll i'lll l'll i\'ll i''ll -i'll /must @pretweeting she`ll

ill ima imma i'ma i'mma ican iwanna umma imaa #imthetypeto iwill
amma #menshouldnever igotta #whywouldyou #iwishicould
#sometimesyouhaveto #thoushallnot #ihatewhenpeople illl
#thingspeopleshouldnotdo #howdareyou #thingsgirlswantboystodo
im'a #womenshouldnever #thingsblackgirlsdo immma iima
#ireallyhatewhenpeople ishould #thingspeopleshouldntdo #irefuseto itl
#howtospoilahoodrat iwont imight #thingsweusedtodoaskids ineeda
#thingswhitepeopledo we'l #whycantyoujust #whydogirls
#everymanshouldknowhowto #ushouldnt #howtopissyourgirloff
#amanshouldnot #uwannaimpressme #realfriendsdont immaa
#ilovewhenyou

[Mixed]

[Contraction
splitting?]

Tuesday, February 20, 18

Word clusters as features

Improved Part-of-Speech Tagging for Online Conversational Text
with Word Clusters

Olutobi Owoputi⇤ Brendan O’Connor⇤ Chris Dyer⇤
Kevin Gimpel† Nathan Schneider⇤ Noah A. Smith⇤

⇤School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
†Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Corresponding author: brenocon@cs.cmu.edu

Abstract

We consider the problem of part-of-speech
tagging for informal, online conversational
text. We systematically evaluate the use of
large-scale unsupervised word clustering
and new lexical features to improve tagging
accuracy. With these features, our system
achieves state-of-the-art tagging results on
both Twitter and IRC POS tagging tasks;
Twitter tagging is improved from 90% to 93%
accuracy (more than 3% absolute). Quali-
tative analysis of these word clusters yields
insights about NLP and linguistic phenomena
in this genre. Additionally, we contribute the
first POS annotation guidelines for such text
and release a new dataset of English language
tweets annotated using these guidelines.
Tagging software, annotation guidelines, and
large-scale word clusters are available at:
http://www.ark.cs.cmu.edu/TweetNLP
This paper describes release 0.3 of the “CMU
Twitter Part-of-Speech Tagger” and annotated
data.

[This paper is forthcoming in Proceedings of
NAACL 2013; Atlanta, GA, USA.]

1 Introduction

Online conversational text, typified by microblogs,
chat, and text messages,1 is a challenge for natu-
ral language processing. Unlike the highly edited
genres that conventional NLP tools have been de-
veloped for, conversational text contains many non-
standard lexical items and syntactic patterns. These
are the result of unintentional errors, dialectal varia-
tion, conversational ellipsis, topic diversity, and cre-
ative use of language and orthography (Eisenstein,
2013). An example is shown in Fig. 1. As a re-
sult of this widespread variation, standard model-

1Also referred to as computer-mediated communication.

ikr
!

smh
G

he
O

asked
V

fir
P

yo
D

last
A

name
N

so
P

he
O

can
V

add
V

u
O

on
P

fb
^

lololol
!

Figure 1: Automatically tagged tweet showing nonstan-
dard orthography, capitalization, and abbreviation. Ignor-
ing the interjections and abbreviations, it glosses as He
asked for your last name so he can add you on Facebook.
The tagset is defined in Appendix A. Refer to Fig. 2 for
word clusters corresponding to some of these words.

ing assumptions that depend on lexical, syntactic,
and orthographic regularity are inappropriate. There
is preliminary work on social media part-of-speech
(POS) tagging (Gimpel et al., 2011), named entity
recognition (Ritter et al., 2011; Liu et al., 2011), and
parsing (Foster et al., 2011), but accuracy rates are
still significantly lower than traditional well-edited
genres like newswire. Even web text parsing, which
is a comparatively easier genre than social media,
lags behind newspaper text (Petrov and McDonald,
2012), as does speech transcript parsing (McClosky
et al., 2010).

To tackle the challenge of novel words and con-
structions, we create a new Twitter part-of-speech
tagger—building on previous work by Gimpel et
al. (2011)—that includes new large-scale distribu-
tional features. This leads to state-of-the-art results
in POS tagging for both Twitter and Internet Relay
Chat (IRC) text. We also annotated a new dataset of
tweets with POS tags, improved the annotations in
the previous dataset from Gimpel et al., and devel-
oped annotation guidelines for manual POS tagging
of tweets. We release all of these resources to the
research community:
• an open-source part-of-speech tagger for online

conversational text (§2);
• unsupervised Twitter word clusters (§3);

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :(:/ -_- -.- :-(:’(d: :| :s -__- =(=/ >.< -___- :-/ </3 :\ -____- ;(/: :((>_< =[:[#fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :(:/ -_- -.- :-(:’(d: :| :s -__- =(=/ >.< -___- :-/ </3 :\ -____- ;(/: :((>_< =[:[#fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :(:/ -_- -.- :-(:’(d: :| :s -__- =(=/ >.< -___- :-/ </3 :\ -____- ;(/: :((>_< =[:[#fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :(:/ -_- -.- :-(:’(d: :| :s -__- =(=/ >.< -___- :-/ </3 :\ -____- ;(/: :((>_< =[:[#fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

“non-standard
prepositions”

“interjections”

“online service
names”

“hashtag-y
interjections”??

Tuesday, February 20, 18

Highest-weighted POS–treenode features
hierarchical structure generalizes nicely.

11

We approach part-of-speech tagging for

informal, online conversational text

using large-scale unsupervised word
clustering and new lexical features. Our
system achieves state-of-the-art tagging
results on both Twitter and IRC data.
Additionally, we contribute the first POS
annotation guidelines for such text and
release a new dataset of English language
tweets annotated using these guidelines.

Improved PartImproved Part--ofof--Speech Tagging for Online Conversational Text with Word ClustersSpeech Tagging for Online Conversational Text with Word Clusters

Word Clusters

Tagger Features
! Hierarchical word clusters via Brown clustering
(Brown et al., 1992) on a sample of 56M tweets
! Surrounding words/clusters
! Current and previous tags
! Tag dict. constructed from WSJ, Brown corpora
! Tag dict. entries projected to Metaphone
encodings
! Name lists from Freebase, Moby Words, Names
Corpus
! Emoticon, hashtag, @mention, URL patterns

Olutobi Owoputi* Brendan O’Connor* Chris Dyer* Kevin Gimpel+ Nathan Schneider* Noah A. Smith*

*School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
+Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Highest Weighted Clusters

Speed
Tagger: 800 tweets/s (compared to 20 tweets/s previously)
Tokenizer: 3,500 tweets/s

Software & Data Release
! Improved emoticon detector and tweet tokenizer
! Newly annotated evaluation set, fixes to previous annotations

Examples

RVVVOPNDVP

NowHateingStartCuldYallSoCroudDaShakeBoutta

Results
Our tagger achieves state-of-the-art results in POS tagging
for each dataset:

O

he
V

can
V

add
O

u
P

on
^

fb lolololsonamelastyofiraskedhesmhikr
!PNADPVOG!

or n & and103&100110*

you yall u it mine everything nothing something anyone

someone everyone nobody

899O11101*

do did kno know care mean hurts hurt say realize believe

worry understand forget agree remember love miss hate

think thought knew hope wish guess bet have

29267V01*

the da my your ur our their his378D1101*

young sexy hot slow dark low interesting easy important

safe perfect special different random short quick bad crazy

serious stupid weird lucky sad

6510A111110*

x <3 :d :p :) :o :/2798E1110101100*

i'm im you're we're he's there's its it's428L11000*

lol lmao haha yes yea oh omg aww ah btw wow thanks

sorry congrats welcome yay ha hey goodnight hi dear

please huh wtf exactly idk bless whatever well ok

8160! 11101010*

Most common word in each cluster with prefixTypesTagCluster prefix

Dev set accuracy using only clusters as featuresAccuracy on NPSCHATTEST corpus

(incl. system messages)

Tagset

Datasets

Tagger, tokenizer, and data all released at:

www.ark.cs.cmu.edu/TweetNLP

Accuracy on RITTERTW corpus

Dev set accuracy using only clusters as featuresAccuracy on NPSCHATTEST corpus

(incl. system messages)

Accuracy on RITTERTW corpus

Dev set accuracy using only clusters as featuresAccuracy on NPSCHATTEST corpus

(incl. system messages)

Model
Discriminative sequence model (MEMM)
with L1/L2 regularization

Tuesday, February 20, 18

85 86 87 88 89 90 91 92 93 94

words

just3clusters

words+dicts

words+clusters

words+clusters+dicts

12

Clusters help POS tagging
85 86 87 88 89 90 91 92 93 94

no-clusters,-tagdict,-namelist

just-clusters-and-transitions

no-clusters

no-tagdict,-namelist

all

Test set accuracy

all handcrafted features
(shape, regexes, char ngrams)

Tuesday, February 20, 18

85 86 87 88 89 90 91 92 93 94

words

just3clusters

words+dicts

words+clusters

words+clusters+dicts

12

Clusters help POS tagging
85 86 87 88 89 90 91 92 93 94

no-clusters,-tagdict,-namelist

just-clusters-and-transitions

no-clusters

no-tagdict,-namelist

all

Test set accuracy

all handcrafted features
(shape, regexes, char ngrams)

Tuesday, February 20, 18

85 86 87 88 89 90 91 92 93 94

words

just3clusters

words+dicts

words+clusters

words+clusters+dicts

12

Clusters help POS tagging
85 86 87 88 89 90 91 92 93 94

no-clusters,-tagdict,-namelist

just-clusters-and-transitions

no-clusters

no-tagdict,-namelist

all

Test set accuracy

all handcrafted features
(shape, regexes, char ngrams)

Tuesday, February 20, 18

85 86 87 88 89 90 91 92 93 94

words

just3clusters

words+dicts

words+clusters

words+clusters+dicts

12

Clusters help POS tagging

#Msg. #Tok. Tagset Dates
OCT27 1,827 26,594 App. A Oct 27-28, 2010
DAILY547 547 7,707 App. A Jan 2011–Jun 2012
NPSCHAT 10,578 44,997 PTB-like Oct–Nov 2006
(w/o sys. msg.) 7,935 37,081
RITTERTW 789 15,185 PTB-like unknown

Table 1: Annotated datasets: number of messages, to-
kens, tagset, and date range. More information in §5,
§6.3, and §6.2.

patterns that seem quite compatible with our ap-
proach. More complex downstream processing like
parsing is an interesting challenge, since contraction
parsing on traditional text is probably a benefit to
current parsers. We believe that any PTB-trained
tool requires substantial retraining and adaptation
for Twitter due to the huge genre and stylistic differ-
ences (Foster et al., 2011); thus tokenization conven-
tions are a relatively minor concern. Our simple-to-
annotate conventions make it easier to produce new
training data.

6 Experiments

We are primarily concerned with performance on
our annotated datasets described in §5 (OCT27,
DAILY547), though for comparison to previous
work we also test on other corpora (RITTERTW in
§6.2, NPSCHAT in §6.3). The annotated datasets
are listed in Table 1.

6.1 Main Experiments
We use OCT27 to refer to the entire dataset de-
scribed in Gimpel et al.; it is split into train-
ing, development, and test portions (OCT27TRAIN,
OCT27DEV, OCT27TEST). We use DAILY547 as
an additional test set. Neither OCT27TEST nor
DAILY547 were extensively evaluated against until
final ablation testing when writing this paper.

The total number of features is 3.7 million, all
of which are used under pure L2 regularization; but
only 60,000 are selected by elastic net regularization
with (�1,�2) = (0.25, 2), which achieves nearly the
same (but no better) accuracy as pure L2,16 and we
use it for all experiments. We observed that it was

16We conducted a grid search for the regularizer values on
part of DAILY547, and many regularizer values give the best or
nearly the best results. We suspect a different setup would have
yielded similar results.

●

●

●

● ●● ●

1e+03 1e+05 1e+07

75
80

85
90

Number of Unlabeled Tweets

Ta
gg

in
g

Ac
cu

ra
cy

●

●

●
●

●● ●

1e+03 1e+05 1e+07

0.
60

0.
65

0.
70

Number of Unlabeled Tweets

To
ke

n
C

ov
er

ag
e

Figure 3: OCT27 development set accuracy using only
clusters as features.

Model In dict. Out of dict.
Full 93.4 85.0
No clusters 92.0 (�1.4) 79.3 (�5.7)
Total tokens 4,808 1,394

Table 3: DAILY547 accuracies (%) for tokens in and out
of a traditional dictionary, for models reported in rows 1
and 3 of Table 2.

possible to get radically smaller models with only
a slight degradation in performance: (4, 0.06) has
0.5% worse accuracy but uses only 1,632 features, a
small enough number to browse through manually.

First, we evaluate on the new test set, training on
all of OCT27. Due to DAILY547’s statistical repre-
sentativeness, we believe this gives the best view of
the tagger’s accuracy on English Twitter text. The
full tagger attains 93.2% accuracy (final row of Ta-
ble 2).

To facilitate comparisons with previous work, we
ran a series of experiments training only on OCT27’s
training and development sets, then report test re-
sults on both OCT27TEST and all of DAILY547,
shown in Table 2. Our tagger achieves substantially
higher accuracy than Gimpel et al. (2011).17

Feature ablation. A number of ablation tests in-
dicate the word clusters are a very strong source of
lexical knowledge. When dropping the tag dictio-
naries and name lists, the word clusters maintain
most of the accuracy (row 2). If we drop the clus-
ters and rely only on tag dictionaries and namelists,
accuracy decreases significantly (row 3). In fact,
we can remove all observation features except for
word clusters—no word features, orthographic fea-

17These numbers differ slightly from those reported by Gim-
pel et al., due to the corrections we made to the OCT27 data,
noted in Section 5.1. We retrained and evaluated their tagger
(version 0.2) on our corrected dataset.

Dev set accuracy
using only clusters as features

85 86 87 88 89 90 91 92 93 94

no-clusters,-tagdict,-namelist

just-clusters-and-transitions

no-clusters

no-tagdict,-namelist

all

Test set accuracy

all handcrafted features
(shape, regexes, char ngrams)

Tuesday, February 20, 18

Direct context approach

• Goal: pairwise similarities

• Rank nearest neighbors

• Agglomerative clustering

• 1. Context representation

• 2. Rescaling (if want real-valued). PPMI is popular

• PPMI(w,c) = max(0, PMI(w,c))

• 3. Similarity metric

• Cosine similarity (and other L2-ish metrics)

• Jaccard or Dice similarity (boolean-valued...)

• Mutual information, etc...

13

Tuesday, February 20, 18

Lin (1998)

• Syntactic contexts (e.g. C -dobj> W)

• Direct context similarity

14

15.3. DISTRIBUTED REPRESENTATIONS 269

Figure 15.3: Similar word pairs from the clustering method of Lin (1998)

15.3 Distributed representations

Distributional semantics are computed from context statistics. Distributed semantics are
a related but distinct idea: that meaning is best represented by numerical vectors rather
than discrete combinatoric structures. Distributed representations are often distributional:
this section will focus on latent semantic analysis and word2vec, both of which are dis-
tributed representations that are based on distributional statistics. However, distributed
representations need not be distributional: for example, they can be learned in a super-
vised fashion from labeled data, as in the sentiment analysis work of Socher et al. (2013b).

Latent semantic analysis

Thus far, we have considered context vectors that are large and sparse. We can arrange
these vectors into a matrix X 2 RV⇥N , where rows correspond to words and columns cor-
respond to contexts. However, for rare words i and j, we might have x>

i

x

j

= 0, indicating
zero counts of shared contexts. So we’d like to have a more robust representation.

We can obtain this by factoring X ⇡ U
K

S
K

V>
K

, where

U
K

2RV⇥K , U
K

U>
K

=I (15.10)

S
K

2RK⇥K , S
K

is diagonal, non-negative (15.11)

V
K

2RD⇥K , V
K

V>
K

=I (15.12)

Here K is a parameter that determines the fidelity of the factorization; if K = min(V, N),
then X = U

K

S
K

V>
K

. Otherwise, we have

U
K

,S
K

,V
K

= argminU
k

,S
K

,V
K

||X � U
K

S
K

V>
K

||
F

, (15.13)

(c) Jacob Eisenstein 2014-2017. Work in progress.

Tuesday, February 20, 18

• Advantage of syntactic preprocessing: delineate
syntactic-level word senses
Lin (1998)

15

simHindle(Wl, W2) ---- ~(r,w)CT(wx)fqT(w2)Are{su~j-of.obj-of} min(I (wl , r, w), I(w2, r, w))
simHindle~ (Wl, W2) = ~(r,w)eT(wl)nT(w~) min(I (wl , r, w), I(w2, r, w))

simcosine(Wl, W2) = ' [T(wl)nT(w2)[
%/[T(wl)[× IT(w2) l

simDi~e(Wl w2) : 2xlT(~)nT(w2)l ' IT(wx)l+lT(w2)l
T(wl)NT(w2) simJacard(Wl, W2) : iT(wl)l+ T(w2)l_lT(wl)nT(w2)l

Figure 1: Other Similarity Measures

puted as follows:

I (w , r , w ')
= _ Iog(PMLE(B)PMLE(A[B)PMLE(CIB))

--(-- log PMLE (A,/3, C))
= log IIw,r,w ×ll*,r,*[

IIw,r,*llx *,r,w'll

It is worth noting that I (w , r , w ') is equal to
the mutual information between w and w' (Hindle,
1990).

Let T(w) be the set of pairs (r ,w') such that
[w,r,w'llxll*,r,*ll log w,r,*llxll*,r,w'll is positive. We define the sim-

ilarity sim(wl, w2) between two words wl and w2
as follows:

]~_~(r,w)ET(wl)NT(w2)(I(wl, r, w) -[- I(w2, r, w))
~(r,w)CT(wl) I (wl , r, w) + ~~(r,w)CT(w~) I(w2, r, w)

We parsed a 64-million-word corpus consisting
of the Wall Street Journal (24 million words), San
Jose Mercury (21 million words) and AP Newswire
(19 million words). From the parsed corpus, we
extracted 56.5 million dependency triples (8.7 mil-
lion unique). In the parsed corpus, there are 5469
nouns, 2173 verbs, and 2632 adjectives/adverbs that
occurred at least 100 times. We computed the pair-
wise similarity between all the nouns, all the verbs
and all the adjectives/adverbs, using the above sim-
ilarity measure. For each word, we created a the-
saurus entry which contains the top-N l words that
are most similar to it. 2 The thesaurus entry for word
w has the following format:

w (pos) : wl, sl , w2, s 2 , . . . , wlv, 8N
where pos is a part of speech, wi is a word,
si=sim(w, wi) and si's are ordered in descending

~We used N=200 in our experiments
2The resulting thesaurus is available at:

http://www.cs.umanitoba.caflindek/sims.htm.

order. For example, the top-10 words in the noun,
verb, and adjective entries for the word "brief" are
shown below:

brief(noun): affidavit 0.13, petition 0.05, memo-
randum 0.05, motion 0.05, lawsuit 0.05, depo-
sition 0.05, slight 0.05, prospectus 0.04, docu-
ment 0.04 paper 0.04

br ief(verb): tell 0.09, urge 0.07, ask 0.07, meet
0.06, appoint 0.06, elect 0.05, name 0.05, em-
power 0.05, summon 0.05, overrule 0.04

brief (adjective): lengthy 0.13, short 0.12, recent
0.09, prolonged 0.09, long 0.09, extended 0.09,
daylong 0.08, scheduled 0.08, stormy 0.07,
planned 0.06

Two words are a pair of respective nearest neigh-
bors (RNNs) if each is the other's most similar
word. Our program found 543 pairs of RNN nouns,
212 pairs of RNN verbs and 382 pairs of RNN
adjectives/adverbs in the automatically created the-
saurus. Appendix A lists every 10th of the RNNs.
The result looks very strong. Few pairs of RNNs in
Appendix A have clearly better alternatives.

We also constructed several other thesauri us-
ing the same corpus, but with the similarity mea-
sures in Figure 1. The m e a s u r e simHindle is the
same as the similarity measure proposed in (Hin-
die, 1990), except that it does not use dependency
triples with negative mutual information. The mea-
sure simHindle r is the same as simHindle except that
all types of dependency relationships are used, in-
stead of just subject and object relationships. The
measures simcosine, simdice and simJacard are ver-
sions of similarity measures commonly used in in-
formation retrieval (Frakes and Baeza-Yates, 1992).
Unlike sim, simaindle and simHindte~, they only

770

Tuesday, February 20, 18

Latent space approach

• Reduce dimensionality

• e.g. SVD. Prediction interp: from reduced dim
space, best L2-minimizing predictions?

• or: gradient learning for bilinear model

• Typically better than original context space

• Denoising: low count contexts too noisy?

• Generalization?

• Computationally: smaller size (fit on phone...)

16

Tuesday, February 20, 18

Learning%Embeddings%by%Preserving%
Similarity%

•  Given%long,%sparse%context%cooccurrence%
vectors%%%%%%%and%%

•  Goal:%Choose%Embeddings%%%%%%%and%%%%%%%%such%
that%similarity%is%approximately%preserved%

•  Difficulty:%need%to%do%this%for%all%words%jointly.%%
•  Solu<on:%Use%an%eigenbdecomposi<on%
(implemented%in%every%language).%%

Ei Ej

Vi Vj

V >
i Vj ⇡ E>

i Ej

Use eigendecomposition /
singular value decomposition /

matrix factorization
For all words jointly?

Tuesday, February 20, 18

Matrix factorization

9

w
or

ds

contexts

V
(counts)

≈

E
(embeddings)

B≈

latent dims
contexts

la
te

nt
 d

im
s

V T
i Vj ⇡ ET

i Ej
Vi,c ⇡

X

k

Ei,kBk,c

Reconstruct the co-occurrence matrix Preserve pairwise distances
between words i, j

Singular Value Decomposition learns E,B
(or other matrix factorization techniques)

Eigen Decomposition learns E

Tuesday, February 20, 18

Skip-gram model

• [Mikolov et al. 2013]

• In word2vec. Learning: SGD under a contrastive sampling approximation
of the objective

• Levy and Goldberg: mathematically similar to factorizing a PMI(w,c)
matrix; advantage is streaming, etc. (though see Arora et al.‘s followups...)

• Practically: very fast open-source implementation

• Variations: enrich contexts

19

270 CHAPTER 15. DISTRIBUTIONAL AND DISTRIBUTED SEMANTICS

subject to the constraints above. This means that U
K

,S
K

,V
K

give the rank-K matrix X̃

that minimizes the Frobenius norm,
qP

i,j

(x
i,j

� x̃
i,j

)2.
This factorization is called the Truncated Singular Value Decomposition, and is closely

related to eigenvalue decomposition of the matrices XX> and X>X. In general, the com-
plexity of SVD is min

�O(D2V), O(V 2N)
�
. The standard library LAPACK (Linear Algebra

PACKage) includes an iterative optimization solution for SVD, and (I think) this what is
called by Matlab and Numpy.

However, for large sparse matrices it is often more efficient to take a stochastic gradient
approach. Each word-context observation hw, ci gives a gradient on u

w

, v
c

, and S, so we
can take a gradient step. This is part of the algorithm that was used to win the Netflix
challenge for predicting movie recommendation — in that case, the matrix includes raters
and movies (Koren et al., 2009).

Return to NLP applications, the slides provide a nice example from Deerwester et al.
(1990), using the titles of computer science research papers. In the example, the context-
vector representations of the terms user and human have negative correlations, yet their
distributional representations have high correlation, which is appropriate since these terms
have roughly the same meaning in this dataset.

Word vectors and neural word embeddings

Discriminatively-trained word embeddings very hot area in NLP. The idea is to replace
factorization approaches with discriminative training, where the task may be to predict
the word given the context, or the context given the word.

Suppose we have the word w and the context c, and we define

u
✓

(w, c) = exp
⇣
a

>
w

b

c

⌘
(15.14)

(15.15)

with a

w

2 RK and b

c

2 RK . The vector a

w

is then an embedding of the word w,
representing its properties. We are usually less interested in the context vector b; the
context can include surrounding words, and the vector b

c

is often formed as a sum of
context embeddings for each word in a window around the current word. Mikolov et al.
(2013a) draw the size of this context as a random number r.

The popular word2vec software3 uses these ideas in two different types of models:

Skipgram model In the skip-gram model (Mikolov et al., 2013a), we try to maximize the
log-probability of the context,

3https://code.google.com/p/word2vec/

(c) Jacob Eisenstein 2014-2017. Work in progress.

15.3. DISTRIBUTED REPRESENTATIONS 271

J =
1

M

X

m

X

�cjc,j 6=0

log p(w
m+j

| w
m

) (15.16)

p(w
m+j

| w
m

) =
u
✓

(w
m+j

, w
m

)P
w

0 u
✓

(w0, w
m

)
(15.17)

=
u
✓

(w
m+j

, w
m

)

Z(w
m

)
(15.18)

This model is considered to be slower to train, but better for rare words.

CBOW The continuous bag-of-words (CBOW) (Mikolov et al., 2013b,c) is more like a
language model, since we predict the probability of words given context.

J =
1

M

X

m

log p(w
m

| c) (15.19)

=
1

M

X

m

log u
✓

(w
m

, c) � log Z(c) (15.20)

u
✓

(w
m

, c) = exp

0

@
X

�cjc,j 6=0

a

>
w

m

b

w

m+j

1

A (15.21)

The CBOW model is faster to train (Mikolov et al., 2013a). One efficiency improve-
ment is build a Huffman tree over the vocabulary, so that we can compute a hier-
archical version of the softmax function with time complexity O(log V) rather than
O(V). Mikolov et al. (2013a) report two-fold speedups with this approach.

The recurrent neural network language model (section 5.3) is still another way to com-
pute word representations. In this model, the context is summarized by a recurrently-
updated state vector c

m

= f(⇥c

m�1

+ Ux

m

), where ⇥ 2 RK⇥K defines a the recurrent
dynamics, U 2 RK⇥V defines “input embeddings” for each word, and f(·) is a non-linear
function such as tanh or sigmoid. The word distribution is then,

P (W
m+1

= i | c
m

) =
exp

�
c

>
m

v

i

�
P

i

0 exp (c>
m

v

i

0)
, (15.22)

where v

i

is the “output embedding” of word i.

(c) Jacob Eisenstein 2014-2017. Work in progress.

Tuesday, February 20, 18

• “Distributional / Word Embedding” models

• Typically, they learn embeddings to be good at word-
context factorization,
which seems to often give useful embeddings

• Pre-trained embeddings resources

• GLOVE, word2vec, etc.

• Make sure it’s trained on a corpus sufficiently similar
to what you care about!

• How to use?

• Fixed (or initializations) for word embedding model
parameters

• Similarity lookups

20

Tuesday, February 20, 18

Extensions

• Alternative: Task-specific embeddings (always better...)

• Multilingual embeddings

• Better contexts: direction, syntax, morphology /
characters...

• Phrases and meaning composition

• vector(hardly awesome) =
g(vector(hardly), vector(awesome))

21

Tuesday, February 20, 18

