
Structured Neural Networks (I)

CS 690N, Spring 2018
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Tuesday, February 13, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

Structured neural networks?

• How to deal with arbitrary length inputs?

• Documents, sentences, long-distance history

• Build structure directly into network
architectures

• Convolutional

• Recurrent

• Dynamic autodiff frameworks make training
easy(-ish) (PyTorch, DyNet)

2

Tuesday, February 13, 18

“Averaging” network
• Continuous Bag-of-Words

3

Goldberg

3.2 Variable Number of Features: Continuous Bag of Words

Feed-forward networks assume a fixed dimensional input. This can easily accommodate the
case of a feature-extraction function that extracts a fixed number of features: each feature
is represented as a vector, and the vectors are concatenated. This way, each region of the
resulting input vector corresponds to a di↵erent feature. However, in some cases the number
of features is not known in advance (for example, in document classification it is common
that each word in the sentence is a feature). We thus need to represent an unbounded
number of features using a fixed size vector. One way of achieving this is through a so-
called continuous bag of words (CBOW) representation (Mikolov, Chen, Corrado, & Dean,
2013). The CBOW is very similar to the traditional bag-of-words representation in which
we discard order information, and works by either summing or averaging the embedding
vectors of the corresponding features:36

CBOW(f
1

, ..., f
k

) =
1

k

kX

i=1

v(f
i

) (1)

A simple variation on the CBOW representation is weighted CBOW, in which di↵erent
vectors receive di↵erent weights:

WCBOW(f
1

, ..., f
k

) =
1

P
k

i=1

a
i

kX

i=1

a
i

v(f
i

) (2)

Here, each feature f
i

has an associated weight a
i

, indicating the relative importance of the
feature. For example, in a document classification task, a feature f

i

may correspond to a
word in the document, and the associated weight a

i

could be the word’s TF-IDF score.

3.3 Distance and Position Features

The linear distance in between two words in a sentence may serve as an informative feature.
For example, in an event extraction task37 we may be given a trigger word and a candidate
argument word, and asked to predict if the argument word is indeed an argument of the
trigger. The distance (or relative position) between the trigger and the argument is a strong
signal for this prediction task. In the “traditional” NLP setup, distances are usually encoded
by binning the distances into several groups (i.e. 1, 2, 3, 4, 5–10, 10+) and associating each
bin with a one-hot vector. In a neural architecture, where the input vector is not composed
of binary indicator features, it may seem natural to allocate a single input entry to the
distance feature, where the numeric value of that entry is the distance. However, this
approach is not taken in practice. Instead, distance features are encoded similarly to the

36. Note that if the v(f
i

)s were one-hot vectors rather than dense feature representations, the CBOW (eq
1) and WCBOW (eq 2) would reduce to the traditional (weighted) bag-of-words representations, which
is in turn equivalent to a sparse feature-vector representation in which each binary indicator feature
corresponds to a unique “word”.

37. The event extraction task involves identification of events from a predefined set of event types. For
example identification of “purchase” events or “terror-attack” events. Each event type can be triggered
by various triggering words (commonly verbs), and has several slots (arguments) that needs to be filled
(i.e. who purchased? what was purchased? at what amount?).

352

• Use averaged representation for e.g. softmax
classifier

• Example: FastText doc classifier (Joulin et al. 2016)

• Pre-trained word embeddings

• Bag-of-words, Bag-of-ngrams

• Hashing (ngram embeddings randomly shared)

• Hierarchical softmax speed trick

• With >100k sentiment labeled training docs,
performs better than explicit feature logistic
regression

Tuesday, February 13, 18

Convolutional NN

• Sentence representation independent of sentence length:

• Sliding window of concatenated word embeddings

• Feedforward transform then elementwise max across positions

• Final sentence representation could be used in various ways: e.g.
classification (Kim 2014). Use joint training.

• Only learns local dependencies (like n-grams)

4

A Primer on Neural Networks for NLP

the quick brown

quick brown fox

brown fox jumped

fox jumped over

jumped over the

over the lazy

the lazy dog

MUL+tanh

MUL+tanh

MUL+tanh

MUL+tanh

MUL+tanh

MUL+tanh

MUL+tanh

W

6⇥ 3

the quick brown fox jumped over the lazy dog

max

convolution pooling

Figure 4: 1d convolution+pooling over the sentence “the quick brown fox jumped over the
lazy dog”. This is a narrow convolution (no padding is added to the sentence)
with a window size of 3. Each word is translated to a 2-dim embedding vector
(not shown). The embedding vectors are then concatenated, resulting in 6-dim
window representations. Each of the seven windows is transfered through a 6⇥ 3
filter (linear transformation followed by element-wise tanh), resulting in seven
3-dimensional filtered representations. Then, a max-pooling operation is applied,
taking the max over each dimension, resulting in a final 3-dimensional pooled
vector.

the information in w
i

. Ideally, each dimension captures a di↵erent kind of indicative infor-
mation. The m vectors are then combined using a max pooling layer, resulting in a single
d
conv

dimensional vector c.

c
j

= max
1<im

p
i

[j] (35)

p
i

[j] denotes the jth component of p
i

. The e↵ect of the max-pooling operation is to get the
most salient information across window positions. Ideally, each dimension will “specialize”
in a particular sort of predictors, and max operation will pick on the most important
predictor of each type.

Figure 4 provides an illustration of the process.
The resulting vector c is a representation of the sentence in which each dimension

reflects the most salient information with respect to some prediction task. c is then fed
into a downstream network layers, perhaps in parallel to other vectors, culminating in an
output layer which is used for prediction. The training procedure of the network calculates
the loss with respect to the prediction task, and the error gradients are propagated all the
way back through the pooling and convolution layers, as well as the embedding layers. 62

62. Besides being useful for prediction, a by-product of the training procedure is a set of parameters W, B
and embeddings v() that can be used in a convolution and pooling architecture to encode arbitrary length

387

[Diagram: Yoav Goldberg]
Tuesday, February 13, 18

http://jair.org/papers/paper4992.html
http://jair.org/papers/paper4992.html

Recurrent NN

A Primer on Neural Networks for NLP

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent
instantiations of R and O will result in di↵erent network structures, and will exhibit di↵erent
properties in terms of their running times and their ability to be trained e↵ectively using
gradient-based methods. However, they all adhere to the same abstract interface. We will
provide details of concrete instantiations of R and O – the Simple RNN, the LSTM and the
GRU – in Section 11. Before that, let’s consider modeling with the RNN abstraction.

First, we note that the value of s
i

is based on the entire input x
1

, ...,x
i

. For example,
by expanding the recursion for i = 4 we get:

s
4

=R(s
3

,x
4

)

=R(

s3z }| {
R(s

2

,x
3

),x
4

)

=R(R(

s2z }| {
R(s

1

,x
2

),x
3

),x
4

)

=R(R(R(

s1z }| {
R(s

0

,x
1

),x
2

),x
3

),x
4

)

(37)

Thus, s
n

(as well as y
n

) could be thought of as encoding the entire input sequence.66 Is
the encoding useful? This depends on our definition of usefulness. The job of the network
training is to set the parameters of R and O such that the state conveys useful information
for the task we are tying to solve.

66. Note that, unless R is specifically designed against this, it is likely that the later elements of the input
sequence have stronger e↵ect on sn than earlier ones.

391

• Simple (“vanilla”) RNN (Elman 1990)

A Primer on Neural Networks for NLP

11. Concrete RNN Architectures

We now turn to present three di↵erent instantiations of the abstract RNN architecture
discussed in the previous section, providing concrete definitions of the functions R and O.
These are the Simple RNN (SRNN), the Long Short-Term Memory (LSTM) and the Gated
Recurrent Unit (GRU).

11.1 Simple RNN

The simplest RNN formulation, known as an Elman Network or Simple-RNN (S-RNN), was
proposed by Elman (1990) and explored for use in language modeling by Mikolov (2012).
The S-RNN takes the following form:

s
i

=Rsrnn(s
i�1

,x
i

) = g(x
i

Wx + s
i�1

Ws + b)

y
i

=Osrnn(s
i

) = s
i

(38)

s
i

,y
i

2 Rd

s , x
i

2 Rd

x , Wx 2 Rd

x

⇥d

s , Ws 2 Rd

s

⇥d

s , b 2 Rd

s

That is, the state at position i is a linear combination of the input at position i and
the previous state, passed through a non-linear activation (commonly tanh or ReLU). The
output at position i is the same as the hidden state in that position.71

In spite of its simplicity, the Simple RNN provides strong results for sequence tagging
(Xu et al., 2015) as well as language modeling. For comprehensive discussion on using
Simple RNNs for language modeling, see the PhD thesis by Mikolov (2012).

11.2 LSTM

The S-RNN is hard to train e↵ectively because of the vanishing gradients problem (Pascanu
et al., 2012). Error signals (gradients) in later steps in the sequence diminish quickly in
the back-propagation process, and do not reach earlier input signals, making it hard for
the S-RNN to capture long-range dependencies. The Long Short-Term Memory (LSTM)
architecture (Hochreiter & Schmidhuber, 1997) was designed to solve the vanishing gradients
problem. The main idea behind the LSTM is to introduce as part of the state representation
also “memory cells” (a vector) that can preserve gradients across time. Access to the
memory cells is controlled by gating components – smooth mathematical functions that
simulate logical gates. At each input state, a gate is used to decide how much of the new
input should be written to the memory cell, and how much of the current content of the
memory cell should be forgotten. Concretely, a gate g 2 [0, 1]n is a vector of values in the
range [0, 1] that is multiplied component-wise with another vector v 2 Rn, and the result is
then added to another vector. The values of g are designed to be close to either 0 or 1, i.e.
by using a sigmoid function. Indices in v corresponding to near-one values in g are allowed
to pass, while those corresponding to near-zero values are blocked.

71. Some authors treat the output at position i as a more complicated function of the state, e.g. a linear
transformation, or an MLP. In our presentation, such further transformation of the output are not
considered part of the RNN, but as separate computations that are applied to the RNNs output.

399

• Other local models: LSTM and GRU
Tuesday, February 13, 18

RNN Uses

• Acceptor

6

A Primer on Neural Networks for NLP

R,O

x
1

s
0

R,O

x
2

s
1

R,O

x
3

s
2

R,O

x
4

s
3

R,O

x
5

s
4

predict &

calc loss

y
5

loss

Figure 7: Acceptor RNN Training Graph.

in a vector y
n

summarizing the entire document. Then, y
n

will be used together with other
features in order to select the sentences to be included in the summarization.

10.2.3 Transducer

Another option is to treat the RNN as a transducer, producing an output for each input
it reads in. Modeled this way, we can compute a local loss signal L

local

(ŷ
i

,y
i

) for each
of the outputs ŷ

i

based on a true label y
i

. The loss for unrolled sequence will then be:
L(ˆy

1:n

,y
1:n

) =
P

n

i=1

L
local

(ŷ
i

,y
i

), or using another combination rather than a sum such
as an average or a weighted average (see Figure 8). One example for such a transducer
is a sequence tagger, in which we take x

i:n

to be feature representations for the n words
of a sentence, and y

i

as an input for predicting the tag assignment of word i based on
words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

R,O

x
1

s
0

predict &

calc loss

y
1

R,O

x
2

s
1

predict &

calc loss

y
2

R,O

x
3

s
2

predict &

calc loss

y
3

R,O

x
4

s
3

predict &

calc loss

y
4

R,O

x
5

s
4

predict &

calc loss

y
5

sum

loss

Figure 8: Transducer RNN Training Graph.

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x

1:i

is used to predict a distribution over the (i+1)th word. RNN based
language models are shown to provide better perplexities than traditional language models
(Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012; Jozefowicz,
Vinyals, Schuster, Shazeer, & Wu, 2016).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction

393

• Transducer

A Primer on Neural Networks for NLP

R,O

x
1

s
0

R,O

x
2

s
1

R,O

x
3

s
2

R,O

x
4

s
3

R,O

x
5

s
4

predict &

calc loss

y
5

loss

Figure 7: Acceptor RNN Training Graph.

in a vector y
n

summarizing the entire document. Then, y
n

will be used together with other
features in order to select the sentences to be included in the summarization.

10.2.3 Transducer

Another option is to treat the RNN as a transducer, producing an output for each input
it reads in. Modeled this way, we can compute a local loss signal L

local

(ŷ
i

,y
i

) for each
of the outputs ŷ

i

based on a true label y
i

. The loss for unrolled sequence will then be:
L(ˆy

1:n

,y
1:n

) =
P

n

i=1

L
local

(ŷ
i

,y
i

), or using another combination rather than a sum such
as an average or a weighted average (see Figure 8). One example for such a transducer
is a sequence tagger, in which we take x

i:n

to be feature representations for the n words
of a sentence, and y

i

as an input for predicting the tag assignment of word i based on
words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

R,O

x
1

s
0

predict &

calc loss

y
1

R,O

x
2

s
1

predict &

calc loss

y
2

R,O

x
3

s
2

predict &

calc loss

y
3

R,O

x
4

s
3

predict &

calc loss

y
4

R,O

x
5

s
4

predict &

calc loss

y
5

sum

loss

Figure 8: Transducer RNN Training Graph.

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x

1:i

is used to predict a distribution over the (i+1)th word. RNN based
language models are shown to provide better perplexities than traditional language models
(Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012; Jozefowicz,
Vinyals, Schuster, Shazeer, & Wu, 2016).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction

393

[Diagram: Yoav Goldberg]
Tuesday, February 13, 18

http://jair.org/papers/paper4992.html
http://jair.org/papers/paper4992.html

• Encoder-decoder

7

RNN Uses

Goldberg

history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see the work
of Karpathy, Johnson, and Li (2015).

10.2.4 Encoder - Decoder

Finally, an important special case of the encoder scenario is the Encoder-Decoder framework
(Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever et al., 2014). The RNN is
used to encode the sequence into a vector representation y

n

, and this vector representation
is then used as auxiliary input to another RNN that is used as a decoder. For example,
in a machine-translation setup the first RNN encodes the source sentence into a vector
representation y

n

, and then this state vector is fed into a separate (decoder) RNN that
is trained to predict (using a transducer-like language modeling objective) the words of
the target language sentence based on the previously predicted words as well as y

n

. The
supervision happens only for the decoder RNN, but the gradients are propagated all the
way back to the encoder RNN (see Figure 9).

R
E

,O
E

x
1

se
0

R
E

,O
E

x
2

se
1

R
E

,O
E

x
3

se
2

R
E

,O
E

x
4

se
3

R
E

,O
E

x
5

se
4

se
5

R
D

,O
D

x
1

sd
0

predict &

calc loss

y
1

R
D

,O
D

x
2

sd
1

predict &

calc loss

y
2

R
D

,O
D

x
3

sd
2

predict &

calc loss

y
3

R
D

,O
D

x
4

sd
3

predict &

calc loss

y
4

R
D

,O
D

x
5

sd
4

predict &

calc loss

y
5

sum

loss

Figure 9: Encoder-Decoder RNN Training Graph.

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al. found
it e↵ective to input the source sentence in reverse, such that x

n

corresponds to the first

394

[Diagram: Yoav Goldberg]
Tuesday, February 13, 18

http://jair.org/papers/paper4992.html
http://jair.org/papers/paper4992.html

Language Modelling: Review

Language models aim to represent the history of observed text
(w1, . . . ,wt�1) succinctly in order to predict the next word (w

t

):

• With count based n-gram LMs we approximate the history with just
the previous n words.

• Neural n-gram LMs embed the same fixed n-gram history in a
continues space and thus capture correlations between histories.

• With Recurrent Neural Network LMs we drop the fixed n-gram
history and compress the entire history in a fixed length vector,
enabling long range correlations to be captured.

w0

There

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

<s>

p̂1

he

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

built

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

a

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rkp̂2 p̂3 p̂4

w1 w2 w3

h1 h2 h3 h4

[Slide: Phil Blunsom]
Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf

Capturing Long Range Dependencies

If an RNN Language Model is to outperform an n-gram model it
must discover and represent long range dependencies:

p(sandcastle | Alice went to the beach. There she built a)

While a simple RNN LM can represent such dependencies in
theory, can it learn them?

wN

costN

w0h0

h1 h2 hN�1 hN

w1 wN�2 wN�1

p̂N

…

[Slide: Phil Blunsom]
Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf

RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost4 to
changes in h1:

h

n

= g(V [x
n

; h
n�1] + c)

p̂

n

= softmax(Wh

n

+ b) w4

cost4

w0h0

h1 h2 h3 h4

w1 w2 w3

p̂4

@cost4
@h1

=
@cost4
@p̂4

@p̂4
@h4

@h4
@h3

@h3
@h2

@h2
@h1

[Slide: Phil Blunsom]
Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf

RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost
N

to changes in h1:

h

n

= g(V [x
n

; h
n�1] + c)

p̂

n

= softmax(Wh

n

+ b)
wN

costN

w0h0

h1 h2 hN�1 hN

w1 wN�2 wN�1

p̂N

…

@cost
N

@h1
=

@cost
N

@p̂
N

@p̂
N

@h
N

0

@
Y

n2{N,...,2}

@h
n

@h
n�1

1

A

[Slide: Phil Blunsom]
Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf

RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost
N

to changes in h1:

h

n

= g(V [x
n

; h
n�1] + c), @cost

N

@h1
= @cost

N

@p̂
N

@p̂
N

@h
N

⇣Q
n2{N,...,2}

@h
n

@h
n�1

⌘

h

n

= g(V
x

x

n

+ V

h

h

n�1 + c| {z }
z

n

), @cost
N

@h1
= @cost

N

@p̂
N

@p̂
N

@h
N

⇣Q
n2{N,...,2}

@h
n

@z
n

@z
n

@h
n�1

⌘

@h
n

@z
n

= diag
�
g

0(z
n

)
�

@z
n

@h
n�1

= V

h

@h
n

@h
n�1

=
@h

n

@z
n

@z
n

@h
n�1

= diag
�
g

0(z
n

)
�
V

h

wN

costN

w0h0

h1 h2 hN�1 hN

w1 wN�2 wN�1

p̂N

…

[Slide: Phil Blunsom]

RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost
N

to changes in h1:

h

n

= g(V [x
n

; h
n�1] + c), @cost

N

@h1
= @cost

N

@p̂
N

@p̂
N

@h
N

⇣Q
n2{N,...,2}

@h
n

@h
n�1

⌘

h

n

= g(V
x

x

n

+ V

h

h

n�1 + c| {z }
z

n

), @cost
N

@h1
= @cost

N

@p̂
N

@p̂
N

@h
N

⇣Q
n2{N,...,2}

@h
n

@z
n

@z
n

@h
n�1

⌘

@h
n

@z
n

= diag
�
g

0(z
n

)
�

@z
n

@h
n�1

= V

h

@h
n

@h
n�1

=
@h

n

@z
n

@z
n

@h
n�1

= diag
�
g

0(z
n

)
�
V

h

wN

costN

w0h0

h1 h2 hN�1 hN

w1 wN�2 wN�1

p̂N

…

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf

RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost
N

to changes in h1:

h

n

= g(V
x

x

n

+ V

h

h

n�1 + c| {z }
z

n

), @cost
N

@h1
= @cost

N

@p̂
N

@p̂
N

@h
N

⇣Q
n2{N,...,2}

@h
n

@z
n

@z
n

@h
n�1

⌘

@h
n

@z
n

= diag
�
g

0(z
n

)
�

@z
n

@h
n�1

= V

h

@h
n

@h
n�1

=
@h

n

@z
n

@z
n

@h
n�1

= diag
�
g

0(z
n

)
�
V

h

wN

costN

w0h0

h1 h2 hN�1 hN

w1 wN�2 wN�1

p̂N

…

[Slide: Phil Blunsom]
Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf

RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost
N

to changes in h1:

h

n

= g(V
x

x

n

+ V

h

h

n�1 + c| {z }
z

n

), @cost
N

@h1
= @cost

N

@p̂
N

@p̂
N

@h
N

⇣Q
n2{N,...,2}

@h
n

@z
n

@z
n

@h
n�1

⌘

@h
n

@z
n

= diag
�
g

0(z
n

)
�

@z
n

@h
n�1

= V

h

@h
n

@h
n�1

=
@h

n

@z
n

@z
n

@h
n�1

= diag
�
g

0(z
n

)
�
V

h

wN

costN

w0h0

h1 h2 hN�1 hN

w1 wN�2 wN�1

p̂N

…

[Slide: Phil Blunsom]
Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf

RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost
N

to changes in h1:

h

n

= g(V
x

x

n

+ V

h

h

n�1 + c| {z }
z

n

), @cost
N

@h1
= @cost

N

@p̂
N

@p̂
N

@h
N

⇣Q
n2{N,...,2}

@h
n

@z
n

@z
n

@h
n�1

⌘

@h
n

@z
n

= diag
�
g

0(z
n

)
�

@z
n

@h
n�1

= V

h

@h
n

@h
n�1

=
@h

n

@z
n

@z
n

@h
n�1

= diag
�
g

0(z
n

)
�
V

h

wN

costN

w0h0

h1 h2 hN�1 hN

w1 wN�2 wN�1

p̂N

…

[Slide: Phil Blunsom]
Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf

RNNs: Exploding and Vanishing Gradients

@cost
N

@h1
=

@cost
N

@p̂
N

@p̂
N

@h
N

0

@
Y

n2{N,...,2}

diag
�
g

0(z
n

)
�
V

h

1

A

The core of the recurrent product is the repeated multiplication of
V

h

. If the largest eigenvalue of V
h

is:

• 1, then gradient will propagate,

• > 1, the product will grow exponentially (explode),

• < 1, the product shrinks exponentially (vanishes).

[Slide: Phil Blunsom]
Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf
https://github.com/oxford-cs-deepnlp-2017/lectures/blob/master/Lecture%25204%2520-%2520Language%2520Modelling%2520and%2520RNNs%2520Part%25202.pdf

LSTM (Long short-term memory)
• Goals:

• 1. Be able to “remember” for longer distances

• 2. Stable backpropagation during training

• Augment individual timesteps with a number of specialized vectors
and gating functions (Simpler alternative: GRU. But LSTM is most standard.)

17

Long Short Term Memory (LSTM)

Christopher Olah: Understanding LSTM Networks
colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

• Main state

• c: Memory cell

• h: Hidden state

• Update system

• g: proposed new values

• f, i, o: Forget, Input, Output gates
control acceptance of g into new state

Tuesday, February 13, 18

18

cj-1

hj-1

xj

cj

hj

memory component (“cell”)

hidden state

input

main information
gating function

Tuesday, February 13, 18

18

cj-1

hj-1

xj

cj

hj

memory component (“cell”)

hidden state

input

g

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

proposed state

main information
gating function

Tuesday, February 13, 18

18

cj-1

hj-1

xj

cj

hj

memory component (“cell”)

hidden state

input

g

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

proposed state

main information
gating function

Tuesday, February 13, 18

18

cj-1

hj-1

xj

cj

hj

f
i

o

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

gates ∈ [0,1]D

memory component (“cell”)

hidden state

input

g

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

proposed state

main information
gating function

Tuesday, February 13, 18

18

cj-1

hj-1

xj

cj

hj

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

f
i

o

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

gates ∈ [0,1]D

memory component (“cell”)

hidden state

input

g

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

proposed state

main information
gating function

Tuesday, February 13, 18

18

cj-1

hj-1

xj

cj

hj

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

f
i

o

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

gates ∈ [0,1]D

memory component (“cell”)

hidden state

input

g

Goldberg

Mathematically, the LSTM architecture is defined as:72

s
j

= Rlstm(s
j�1

,x
j

) =[c
j

;h
j

]

c
j

=c
j�1

� f + g � i

h
j

=tanh(c
j

)� o

i =�(x
j

Wxi + h
j�1

Whi)

f =�(x
j

Wxf + h
j�1

Whf)

o =�(x
j

Wxo + h
j�1

Who)

g =tanh(x
j

Wxg + h
j�1

Whg)

y
j

= Olstm(s
j

) =h
j

(39)

s
j

2 R2·d
h , x

i

2 Rd

x , c
j

,h
j

, i, f ,o,g 2 Rd

h , Wx� 2 Rd

x

⇥d

h , Wh� 2 Rd

h

⇥d

h ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, c

j

and h
j

, where c
j

is the memory component and h
j

is the hidden
state component. There are three gates, i, f and o, controlling for input, forget and output.
The gate values are computed based on linear combinations of the current input x

j

and the
previous state h

j�1

, passed through a sigmoid activation function. An update candidate g
is computed as a linear combination of x

j

and h
j�1

, passed through a tanh activation func-
tion. The memory c

j

is then updated: the forget gate controls how much of the previous
memory to keep (c

j�1

� f), and the input gate controls how much of the proposed update
to keep (g � i). Finally, the value of h

j

(which is also the output y
j

) is determined based
on the content of the memory c

j

, passed through a tanh non-linearity and controlled by the
output gate. The gating mechanisms allow for gradients related to the memory part c

j

to
stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as the online-post by Olah (2015b). For an analysis of the behavior of an
LSTM when used as a character-level language model, see the work of Karpathy et al.
(2015).

For further explanation of the motivation behind the gating mechanism in the LSTM
(and the GRU) and its relation to solving the vanishing gradient problem in recurrent neural
networks, see Sections 4.2 and 4.3 in the detailed course notes of Cho (2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

72. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal by Hochreiter and Schmidhuber (1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see the work of Gre↵, Srivastava,
Koutńık, Steunebrink, and Schmidhuber (2015).

400

proposed state

main information
gating function

Tuesday, February 13, 18

• Note many LSTM variants (peephole or not; ci+use (1-f) or not...)
[diagram: Gers and Schmidhuber 2001]

• LSTMs have a poor reputation for understandability... yet do something right...
usually just used as a black-box

19

Tuesday, February 13, 18

First, the devishin it son?

MONTANO:
'Tis true as full Squellen the rest me, my passacre. and nothink
my fairs,' done to vision of actious to thy to love, brings gods!

THUR:
Will comfited our flight offend make thy love;
Brothere is oats at on thes:'--why, cross and so
her shouldestruck at one their hearina in all go to lives of
Costag,
To his he tyrant of you our the fill we hath trouble an over me?

KING JOHN:
Great though I gain; for talk to mine and to the Christ: a right
him out

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

Tuesday, February 13, 18

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Structure awareness

Tuesday, February 13, 18

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• LSTMs used as a generic, sequence-aware model
within language modeling, translation generation,
classification and tagging

• Various LSTM-analyzing-text visualizations

• http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• http://lstm.seas.harvard.edu/

• Question: can they learn interactions we know are
in natural language?

• Thursday: Linzen et al.!

22

Tuesday, February 13, 18

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://lstm.seas.harvard.edu/
http://lstm.seas.harvard.edu/

