Log-linear models (part |1)

CS 690N, Spring 2018

Advanced Natural Language Processing
http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Saturday, February 3, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

MaxEnt / Log-Linear models

X: input (all previous words)
y: output (next word)
f(x,y) => Rd feature function [[domain knowledge here!]]

v: Rd parameter vector (weights)

CXp (’U ' f(f, y))
2y cy XD (v- fz,y'))

p(y|z;v) =

Application to history-based LM:

P(wy..wy) = HP(wt | wy.we_)

exp(v (w1 W1, Wt))
_ H S

WV exp(v - flwi..we_1,w))

Saturday, February 3, 18

fi(z,y)
fa(z,y)
f3(z,y)
falz,y)
f5(z,y)
fo(z,y)
fr(z,y)

f8(377y)

—N— —— A A A A "

o O O, O, Ok Ok, Ok O

if y =model
otherwise

if y=model and w;_1 = statistical
otherwise

if y =model, w;_o =any,w,;_1 =statistical
otherwise

if y =model, w;_o =any
otherwise

if y =model, w;_1 is an adjective
otherwise

if y =model, w;_1 ends in “ical”

otherwise

if y =model, “model” 1s not in w1, ... w;_1
otherwise

if y =model, “grammatical” is in wy, ... w;_1
otherwise

Figure 1: Example features for the language modeling problem, where the input x
1s a sequence of words wyws ... w;_1, and the label y 1s a word.

® These are sparse. But still very useful.

3

Saturday, February 3, 18

Feature templates

® Generate large collection of features from single template

® Not part of (standard) log-linear mathematics, but how you
actually build these things
® e.g. Trigram feature template:
For every (u,v,w) trigram in training data, create feature

1 ify=w, wi_9=u wj_1 =0
fN(u,v,w) (337 y) { Z Z

0O otherwise

where N (u,v,w) is a function that maps each trigram in the training data to a
unique integer.

® At training time: record N(u,v,w) mapping

® At test time: extract trigram features and check if they are in the
feature vocabulary

® Feature engineering: iterative cycle of model development
4

Saturday, February 3, 18

Feature subtleties

® On training data, generate all features under
consideration

® Subtle issue: partially unseen features
® At testing time,a completely new feature has to be
ignored (weight 0)
® Assuming a conditional log-linear model,

® Features typically conjoin between aspects of both
input and output

® Features can only look at the output f(y)
® |nvalid: Features that only look at the input

Saturday, February 3, 18

Learning

® |og-likelihood is concave

® (At least with regularization... need since typically linearly
separable)

log p(ylz;v) = v- f(x,y) —log > exp(v- f(x,y))
y' ey

5% log p(y|z;v) =

Saturday, February 3, 18

Learning

® |og-likelihood is concave

® (At least with regularization... need since typically linearly
separable)

logp(ylz;v) = v- f(x,y) — log Z exp (v f(z,y))
y'ey
. fun with the chain rule
a \ 4
5, logp(ylz;v) =

J

Saturday, February 3, 18

Learning

® |og-likelihood is concave

® (At least with regularization... need since typically linearly
separable)

logp(ylz;v) = v- f(x,y) — log Z exp (v f(z,y))
y'ey
. fun with the chain rule

a \4
aTlogp(y\a:;v) = filzy) - Zp(y’lar;v)fj(x,y’)

J

Saturday, February 3, 18

Learning

® |og-likelihood is concave
® (At least with regularization... need since typically linearly

separable)
log p(y|z;v) = —log) exp(v- f(z,y))
y' ey
! fun with the chain rule
o,
v, log p(ylz;v) = fi(z,y) — Zp(y’h?;v)fj(x,y’)

Feature in data? Feature in posterior?

Saturday, February 3, 18

Learning

® |og-likelihood is concave
® (At least with regularization... need since typically linearly

separable)
log p(y|z;v) = —log) exp(v- f(z,y))
y' ey
! fun with the chain rule
o,
v, log p(ylz;v) = fi(z,y) — Zp(y’|$;v)fj($,y’)

Feature in data? Feature in posterior?

® Gradient at a single example: can it be zero!
® Full dataset gradient: First moments match at mode

® Model-expected feature count = Empirical feature count
For each feature j:

Ey~piyix;v[fi(XY) 1 = Ey~Pempir(yi [fi(X,y)]

Saturday, February 3, 18

Moment matching

® Example: Rosenfeld’s trigger words
® “.. loan ...wentinto the bank”

Empirical history prob.
(Bigram model estimate)

Pgicram (BANK|THE) = K{THEJBANK}

Log-linear model: E [PCOMBINED(BANK|h)] — K{THE,BANK}
has weaker property /ends in “THE”

e AVERAGED model probability over all “....the " instances.
(Not same for each!)

® Maximum Entropy view of a log-linear model:

® Start with feature expectations as constraints.
What is the highest entropy distribution that satisfies them!?

Saturday, February 3, 18

Gradient descent

® Batch gradient descent -- doesn’t work well by
itself

® Most commonly used alternatives

® | BFGS (adaptive version of batch GD)
® SGD, one example at a time
® and adaptive variants: Adagrad, Adam, etc.
® Moment matching intuition!

® |ssue: Combining per-example sparse updates

with regularization updates (lazy updates, occasional
regularization sweeps)

Saturday, February 3, 18

Triggers: will they help?

HARVEST < CROP HARVEST CORN SOYBEAN SOYBEANS AGRICULTURE GRAIN DROUGHT GRAINS
BUSHELS

HARVESTING < CROP HARVEST FORESTS FARMERS HARVESTING TIMBER TREES LOGGING ACRES
FOREST

HASHEMI < IRAN IRANIAN TEHRAN IRAN’S IRANIANS LEBANON AYATOLLAH HOSTAGES KHOMEINI
ISRAELI HOSTAGE SHIITE ISLAMIC IRAQ PERSIAN TERRORISM LEBANESE ARMS ISRAEL TERRORIST

HASTINGS < HASTINGS IMPEACHMENT ACQUITTED JUDGE TRIAL DISTRICT FLORIDA
HATE < HATE MY YOU HER MAN ME I LOVE

HAVANA < CUBAN CUBA CASTRO HAVANA FIDEL CASTRO’S CUBA’S CUBANS COMMUNIST MIAMI
REVOLUTION

Table 7: The best triggers ”A” for some given words “B”, in descending order, as measured by MI(A,.3, : B).

Saturday, February 3, 18

Triggers help

vocabulary top 20,000 words of WSJ corpus

training set SMW (WSJ)

test set 325KW (WS))

trigram perplexity (baseline) 173 173

ME experiment top 3 top 6

ME constraints:
unigrams 18400 18400
bigrams 240000 240000
trigrams 414000 414000
triggers 36000 65000

ME perplexity 134 130
perplexity reduction 23% 25%

0.75-ME + 0.25-trigram perplexity 129 127
perplexity reduction 25% 2'7%

Table 8: Maximum Entropy models incorporating N-gram and trigger constraints.

note (1) feature explosion, (2) ensembling helps
|0

Saturday, February 3, 18

Stemming: will it help?

[ACCRUAL] : ACCRUAL

[ACCRUE] : ACCRUE, ACCRUED, ACCRUING
[ACCUMULATE] ;. ACCUMULATE, ACCUMULATED, ACCUMULATING
[ACCUMULATION] : ACCUMULATION

[ACCURACY] : ACCURACY

[ACCURATE] : ACCURATE, ACCURATELY

[ACCURAY] : ACCURAY

[ACCUSATION] : ACCUSATION, ACCUSATIONS

[ACCUSE] . ACCUSE, ACCUSED, ACCUSES, ACCUSING
[ACCUSTOM] : ACCUSTOMED

[ACCUTANE] : ACCUTANE

[ACE] . ACE

[ACHIEVE] : ACHIEVE, ACHIEVED, ACHIEVES, ACHIEVING
[ACHIEVEMENT] : ACHIEVEMENT, ACHIEVEMENTS

[ACID] : ACID

Table 9: A randomly selected set of examples of stem-based clustering, using morphological analysis provided
by the 'morphe’ program.

Saturday, February 3, 18

Stemming doesn’t help (much..)

vocabulary top 20,000 words of WSIJ corpus
training set 300KW (WS)J))
test set 325KW (WS))
unigram perplexity 903
model word self-triggers | class self-triggers
ME constraints:
unigrams 9017 9017
word self-triggers 2658 —
class self-triggers — 2409
training-set perplexity 745 740
test-set perplexity 888 870

Table 10: Word self-triggers vs. class self-triggers, in the presence of unigram constraints. Stem-based
clustering does not help much.

Saturday, February 3, 18

Engineering

® Sparse dot products are crucial!
® |ots and lots of features!?

® Millions to billions of features: performance often keeps
improving!

® Features seen only once at training time typically help

® Feature name=>number mapping is the problem;
the parameter vector is fine

® Feature hashing: make e.g. N(u,v,w) mapping random
with collisions (!)

® Accuracy loss low since features are rare. Works really
well, and extremely practical computational properties
(memory usage known in advance)

® Practically: use a fast string hashing function (murmurhash
or Python’s internal one, etc.)

|3

Saturday, February 3, 18

Feature selection

® Count cutoffs: computational, not performance
® Offline feature selection: MI/IG vs. chi-square

® || regularization: encourages O sparsity

min —logpe(y|a?)+>\zwj| g@ @@

N 4

—

L1 L2

® | | optimization: convex but nonsmooth; requires
subgradient methods

Saturday, February 3, 18

