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MaxEnt / Log-Linear models

X: input (all previous words)
y: output (next word)
f(x,y) => Rd feature function [[domain knowledge here!]]

v: Rd parameter vector (weights)

CXp (’U ' f(f, y))
2y cy XD (v- fz,y'))

p(y|z;v) =

Application to history-based LM:

P(wy..wy) = HP(wt | wy.we_)

exp(v (w1 W1, Wt))
_ H S

WV exp(v - flwi..we_1,w))

Saturday, February 3, 18



fi(z,y)
fa(z,y)
f3(z,y)
falz,y)
f5(z,y)
fo(z,y)
fr(z,y)

f8(377y)

—N— —— A A A A "

o O O, O, Ok Ok, Ok O

if y =model
otherwise

if y=model and w;_1 = statistical
otherwise

if y =model, w;_o =any,w,;_1 =statistical
otherwise

if y =model, w;_o =any
otherwise

if y =model, w;_1 is an adjective
otherwise

if y =model, w;_1 ends in “ical”

otherwise

if y =model, “model” 1s not in w1, ... w;_1
otherwise

if y =model, “grammatical” is in wy, ... w;_1
otherwise

Figure 1: Example features for the language modeling problem, where the input x
1s a sequence of words wyws ... w;_1, and the label y 1s a word.

® These are sparse. But still very useful.

3
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Feature templates

® Generate large collection of features from single template

® Not part of (standard) log-linear mathematics, but how you
actually build these things
® e.g. Trigram feature template:
For every (u,v,w) trigram in training data, create feature

1 ify=w, wi_9=u wj_1 =0
fN(u,v,w) (337 y) { Z Z

0O otherwise

where N (u,v,w) is a function that maps each trigram in the training data to a
unique integer.

® At training time: record N(u,v,w) mapping

® At test time: extract trigram features and check if they are in the
feature vocabulary

® Feature engineering: iterative cycle of model development
4
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Feature subtleties

® On training data, generate all features under
consideration

® Subtle issue: partially unseen features
® At testing time,a completely new feature has to be
ignored (weight 0)
® Assuming a conditional log-linear model,

® Features typically conjoin between aspects of both
input and output

® Features can only look at the output f(y)
® |nvalid: Features that only look at the input
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Learning

® |og-likelihood is concave

® (At least with regularization... need since typically linearly
separable)

log p(ylz;v) = v- f(x,y) —log > exp(v- f(x,y))
y' ey

5% log p(y|z;v) =
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Learning

® |og-likelihood is concave

® (At least with regularization... need since typically linearly
separable)

logp(ylz;v) = v- f(x,y) — log Z exp (v f(z,y))
y'ey
. fun with the chain rule
a \ 4
5, logp(ylz;v) =

J
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Learning

® |og-likelihood is concave

® (At least with regularization... need since typically linearly
separable)

logp(ylz;v) = v- f(x,y) — log Z exp (v f(z,y))
y'ey
. fun with the chain rule

a \4
aTlogp(y\a:;v) = filzy) - Zp(y’lar;v)fj(x,y’)

J
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Learning

® |og-likelihood is concave
® (At least with regularization... need since typically linearly

separable)
log p(y|z;v) = —log ) exp(v- f(z,y))
y' ey
! fun with the chain rule
o,
v, log p(ylz;v) = fi(z,y) — Zp(y’h?;v)fj(x,y’)

Feature in data? Feature in posterior?
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Learning

® |og-likelihood is concave
® (At least with regularization... need since typically linearly

separable)
log p(y|z;v) = —log ) exp(v- f(z,y))
y' ey
! fun with the chain rule
o,
v, log p(ylz;v) = fi(z,y) — Zp(y’|$;v)fj($,y’)

Feature in data? Feature in posterior?

® Gradient at a single example: can it be zero!
® Full dataset gradient: First moments match at mode

® Model-expected feature count = Empirical feature count
For each feature j:

Ey~piyix;v[ fi(XY) 1 = Ey~Pempir(yi [fi(X,y)]
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Moment matching

® Example: Rosenfeld’s trigger words
® “.. loan ...wentinto the bank”

Empirical history prob.
(Bigram model estimate)

Pgicram (BANK|THE) = K{THEJBANK}

Log-linear model: E [ PCOMBINED(BANK|h) ] — K{THE,BANK}
has weaker property  /ends in “THE”

e AVERAGED model probability over all “....the " instances.
(Not same for each!)

® Maximum Entropy view of a log-linear model:

® Start with feature expectations as constraints.
What is the highest entropy distribution that satisfies them!?
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Gradient descent

® Batch gradient descent -- doesn’t work well by
itself

® Most commonly used alternatives

® | BFGS (adaptive version of batch GD)
® SGD, one example at a time
® and adaptive variants: Adagrad, Adam, etc.
® Moment matching intuition!

® |ssue: Combining per-example sparse updates

with regularization updates (lazy updates, occasional
regularization sweeps)
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Triggers: will they help?

HARVEST < CROP HARVEST CORN SOYBEAN SOYBEANS AGRICULTURE GRAIN DROUGHT GRAINS
BUSHELS

HARVESTING < CROP HARVEST FORESTS FARMERS HARVESTING TIMBER TREES LOGGING ACRES
FOREST

HASHEMI < IRAN IRANIAN TEHRAN IRAN’S IRANIANS LEBANON AYATOLLAH HOSTAGES KHOMEINI
ISRAELI HOSTAGE SHIITE ISLAMIC IRAQ PERSIAN TERRORISM LEBANESE ARMS ISRAEL TERRORIST

HASTINGS < HASTINGS IMPEACHMENT ACQUITTED JUDGE TRIAL DISTRICT FLORIDA
HATE < HATE MY YOU HER MAN ME I LOVE

HAVANA < CUBAN CUBA CASTRO HAVANA FIDEL CASTRO’S CUBA’S CUBANS COMMUNIST MIAMI
REVOLUTION

Table 7: The best triggers ”A” for some given words “B”, in descending order, as measured by MI(A,.3, : B).
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Triggers help

vocabulary top 20,000 words of WSJ corpus

training set SMW (WSJ)

test set 325KW (WS))

trigram perplexity (baseline) 173 173

ME experiment top 3 top 6

ME constraints:
unigrams 18400 18400
bigrams 240000 240000
trigrams 414000 414000
triggers 36000 65000

ME perplexity 134 130
perplexity reduction 23% 25%

0.75-ME + 0.25-trigram perplexity 129 127
perplexity reduction 25% 2'7%

Table 8: Maximum Entropy models incorporating N-gram and trigger constraints.

note (1) feature explosion, (2) ensembling helps
|0
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Stemming: will it help?

[ACCRUAL] :  ACCRUAL

[ACCRUE] :  ACCRUE, ACCRUED, ACCRUING
[ACCUMULATE] ;. ACCUMULATE, ACCUMULATED, ACCUMULATING
[ACCUMULATION] : ACCUMULATION

[ACCURACY] :  ACCURACY

[ACCURATE] :  ACCURATE, ACCURATELY

[ACCURAY] :  ACCURAY

[ACCUSATION] :  ACCUSATION, ACCUSATIONS

[ACCUSE] . ACCUSE, ACCUSED, ACCUSES, ACCUSING
[ACCUSTOM] :  ACCUSTOMED

[ACCUTANE] :  ACCUTANE

[ACE] . ACE

[ACHIEVE] :  ACHIEVE, ACHIEVED, ACHIEVES, ACHIEVING
[ACHIEVEMENT] :  ACHIEVEMENT, ACHIEVEMENTS

[ACID] :  ACID

Table 9: A randomly selected set of examples of stem-based clustering, using morphological analysis provided
by the 'morphe’ program.
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Stemming doesn’t help (much..)

vocabulary top 20,000 words of WSIJ corpus
training set 300KW (WS)J))
test set 325KW (WS))
unigram perplexity 903
model word self-triggers | class self-triggers
ME constraints:
unigrams 9017 9017
word self-triggers 2658 —
class self-triggers — 2409
training-set perplexity 745 740
test-set perplexity 888 870

Table 10: Word self-triggers vs. class self-triggers, in the presence of unigram constraints. Stem-based
clustering does not help much.
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Engineering

® Sparse dot products are crucial!
® |ots and lots of features!?

® Millions to billions of features: performance often keeps
improving!

® Features seen only once at training time typically help

® Feature name=>number mapping is the problem;
the parameter vector is fine

® Feature hashing: make e.g. N(u,v,w) mapping random
with collisions (!)

® Accuracy loss low since features are rare. Works really
well, and extremely practical computational properties
(memory usage known in advance)

® Practically: use a fast string hashing function (murmurhash
or Python’s internal one, etc.)

|3
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Feature selection

® Count cutoffs: computational, not performance
® Offline feature selection: MI/IG vs. chi-square

® || regularization: encourages O sparsity

min —logpe(y|a?)+>\zwj| g@ @@

N 4

—

L1 L2

® | | optimization: convex but nonsmooth; requires
subgradient methods
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