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NLP/ML talks this week!

• Michael Jordan - Distinguished Lecture, today 
(4:30pm)

• On Computational Thinking, Inferential Thinking and 
Data Science

• Graham Neubig - MLFL, Thursday, 12pm

• What Can Neural Networks Teach us about Language

• Allison Chaney - DS Seminar, Thursday, 4pm

• The Social Side of Recommendation Systems: How 
Groups Shape Our Decisions
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• Issues in n-gram models

• Lexical generalization

• S+P: latent lexical variables

• Non-local constraints

• Rosenfeld (1996)

• Data analysis of long-distance lexical effects  (topicality??)

• Incorporate into “MaxEnt” (a.k.a. Log-Linear) language model: 
allow multiple sources of information

• Early example of machine learning-based prediction for 
language modeling

• [The iterative scaling algorithm less interesting;
gradient descent, or rather L-BFGS, has since been found to be 
better]
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• Ms. Yates’s order was a remarkable rebuke by a 
government official to a sitting president, and it 
recalled the so-called Saturday Night Massacre 
in 1973, when President Richard M. Nixon fired 
his attorney general and deputy attorney 
general for refusing to dismiss the special 
prosecutor in the Watergate ___
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Information theory perspective

• Coding interpretation: average number of bits/nats

• Entropy of uniform V-sided die?
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Cross-entropy: model PM, test distribution PT

(equiv. to average neg. log-likelihood)

argmax
L
Pr(L A) = argmax

L

Pr(A L) Pr(L)
Pr(A)

= argmax
L
Pr(A L) Pr(L) (1)

For a given signal A, Pr(A L) is estimated by the acoustic matcher, which compares A to its stored models
of all speech units. Providing an estimate for Pr(L) is the responsibility of the language model.

Let L = wn1
def= w1 w2 . . .wn, where the wi’s are the words that make up the hypothesis. One way to

estimate Pr(L) is to use the chain rule:

Pr(L) =
n

i=1

Pr(wi wi 1
1 )

Indeed, most statistical language models try to estimate expressions of the form Pr(wi wi 1
1 ). The latter is

often written as Pr(w h), where h def= wi 1
1 is called the history.

1.2 View from Information Theory

Another view of statistical language modeling is grounded in information theory. Language is considered
an information source L ([Abramson 63]), which emits a sequence of symbols wi from a finite alphabet (the
vocabulary). The distribution of the next symbol is highly dependent on the identity of the previous ones —
the source L is a high-order Markov chain.

The information source L has a certain inherent entropy H. This is the amount of non-redundant informa-
tion conveyed per word, on average, by L. According to Shannon’s theorem ([Shannon 48]), any encoding
of L must use at least H bits per word, on average.

The quality of a language modelM can be judged by its cross entropywith regard to the distribution PT(x)
of some hitherto unseen text T:

H (PT;PM) =
x
PT(x) logPM(x) (2)

H (PT;PM) has also been called the logprob ([Jelinek 89]). Often, the perplexity ([Jelinek et al. 77]) of the
text with regard to the model is reported. It is defined as:

PPM(T) = 2H (PT;PM) (3)

Using an ideal model, which capitalizes on every conceivable correlation in the language, L’s cross entropy
would equal its true entropy H. In practice, however, all models fall far short of that goal. Worse, the quantity
H is not directly measurable (though it can be bounded, see [Shannon 51, Cover and King 78, Jelinek 89]).
On the other extreme, if the correlations among the wi’s were completely ignored, the cross entropy of the
source L would be w PrPRIOR(w) log PrPRIOR(w), where PrPRIOR(w) is the prior probability of w. This quantity
is typically much greater than H. All other language models fall within this range.

Under this view, the goal of statistical language modeling is to identify and exploit sources of information
in the language stream, so as to bring the cross entropy down, as close as possible to the true entropy. This
view of statistical language modeling is dominant in this work.

2

Entropy: uncertainty in distribution P
(obeys reasonable axioms)

H(P ) =

X

x

P (x) log

1

P (x)
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exp ( )

5.4. EVALUATING LANGUAGE MODELS 131

5.4.2 Perplexity

Held-out likelihood is usually presented as perplexity, which is a deterministic transfor-
mation of the log-likelihood into an information-theoretic quantity,

Perplex(w) = 2�
`(w)
M

, [5.49]

where M is the total number of tokens in the held-out corpus.

Lower perplexities correspond to higher likelihoods, so lower scores are better on this
metric. (How to remember: lower perplexity is better, because your language model is
less perplexed.) To understand perplexity, here are some special cases:

• In the limit of a perfect language model, probability 1 is assigned to the held-out
corpus, with Perplex(w) = 2�

1
M

log2 1 = 20 = 1.

• In the opposite limit, probability zero is assigned to the held-out corpus, which cor-
responds to an infinite perplexity, Perplex(w) = 2�

1
M

log2 0 = 21 = 1.

• Assume a uniform, unigram model in which p(wi) = 1

V for all words in the vocab-
ulary. Then,

log
2

(w) =

MX
m=1

log
2

1

V
= �

MX
m=1

log
2

V = �M log
2

V

Perplex(w) =2
1
M

M log2 V

=2log2 V

=V.

This is the “worst reasonable case” scenario, since you could build such a language
model without even looking at the data.

In practice, n-gram language models tend to give perplexities in the range between 1
and V . For example, Jurafsky and Martin estimate a language model over a vocabularly of
roughly 20, 000 words, on 38 million tokens of text from the Wall Street Journal (Jurafsky
and Martin, 2009, page 97). They report the following perplexities on a held-out set of 1.5
million tokens:

• Unigram (n = 1): 962

• Bigram (n = 2): 170

• Trigram (n = 3): 109

Will this trend continue?

(c) Jacob Eisenstein 2018. Work in progress.

Perplexity = 

WSJ Penn Treebank
V = 20,000

1.5 M test tokens
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Behavioral data!
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3. Data Driven Clustering ([Jelinek 89, appendix C], [Jelinek 89, appendix D], [Brown et al. 90b],
[Kneser and Ney 91], [Suhm and Waibel 94]).

See [Rosenfeld 94b] for a more detailed exposition.

2.4 Intermediate Distance

Long-distance N-grams attempt to capture directly the dependence of the predicted word onN-1–grams which
are some distance back. For example, a distance-2 trigram predicts wi based on (wi 3 wi 2). As a special
case, distance-1 N-grams are the familiar conventional N-grams.

In [Huang et al. 93] we attempted to estimate the amount of information in long-distance bigrams. A
long-distance bigram was constructed for distance d = 1 . . . 10 1000, using the 1 million word Brown
Corpus as training data. The distance-1000 case was used as a control, since at that distance no significant
information was expected. For each such bigram, the training-set perplexity was computed. The latter is
an indication of the average mutual information between word wi and word wi d. As expected, we found
perplexity to be low for d = 1, and to increase significantly as we moved through d = 2 3 4 and 5. For
d = 6 . . . 10, training-set perplexity remained at about the same level2. See table 1. We concluded that
significant information exists in the last 5 words of the history.

distance 1 2 3 4 5 6 7 8 9 10 1000
PP 83 119 124 135 139 138 138 139 139 139 141

Table 1: Training-set perplexity of long-distance bigrams for various distances, based on 1 million words of
the Brown Corpus. The distance=1000 case was included as a control.

Long-distance N-grams are seriously deficient. Although they capture word-sequence correlations even
when the sequences are separated by distance d, they fail to appropriately merge training instances that are
based on different values of d. Thus they unnecessarily fragment the training data.

2.5 Long Distance (Triggers)

2.5.1 Evidence for Long Distance Information

Evidence for the significant amount of information present in the longer-distance history is found in the
following two experiments:

Long-Distance Bigrams. The previous section discusses the experiment on long-distance bigrams reported
in [Huang et al. 93]. As mentioned, training-set perplexity was found to be low for the conventional
bigram (d = 1), and to increase significantly as one moved through d = 2 3 4 and 5. For d = 6 . . . 10,
training-set perplexity remained at about the same level. But interestingly, that level was slightly yet
consistently below perplexity of the d = 1000 case (see table 1). We concluded that some information
indeed exists in the more distant past, but it is spread thinly across the entire history.

Shannon Game at IBM [Mercer and Roukos 92]. A “Shannon game” program was implemented at IBM,
where a person tries to predict the next word in a document while given access to the entire history
of the document. The performance of humans was compared to that of a trigram language model. In
particular, the cases where humans outsmarted the model were examined. It was found that in 40% of
these cases, the predicted word, or a word related to it, occurred in the history of the document.

2although below the perplexity of the d = 1000 case. See the following section.
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• Cognitive science & human behavioral evidence can inspire much 
better NLP modeling

• Inspecting differences in two models’ performance (here, human-
vs-machine; can also do machine-vs-machine)
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• How to capture long distance information?

• Attempt 1: fixed distance a.k.a. skip-grams

• P(wt  |  wt-1),  P(wt  |  wt-10) ...
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4

still a gap:
information 

“spread thinly”

• Attempt 2: Trigger pairs

• event “A -> B”:  ngram A occurred anywhere in 
document before ngram B  (brest -> litovsk, stock -> 
bond)

• count(A,B): sparsity compared to Markov bigram model?

• P(wt = A |  B ∈ (w0 ... wt-1))
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Before attempting to design a trigger-based model, one should study what long distance factors have
significant effects on word probabilities. Obviously, some information about P(B) can be gained simply by
knowing that A had occurred. But can significantly more be gained by considering how recently A occurred,
or how many times?

We have studied these issues using the Wall Street Journal corpus of 38 million words. First, an index
file was created that contained, for every word, a record of all of its occurrences. Then, for any candidate
pair of words, we computed log cross product ratio, average mutual information (MI), and distance-based and
count-based co-occurrence statistics. The latter were used to draw graphs depicting detailed trigger relations.
Some illustrations are given in figs. 2 and 3. After using the program to manually browse through many

 1 2 3 4-10 11-25 26-50 51-100 101-200 201-500

P( SHARES )

501+

P( SHARES  |  ST OCK )

P( SHARES )

P( SHARES  | ~  ST OCK )

Figure 2: Probability of ’SHARES’ as a function of the distance from the last occurrence of ’STOCK’ in
the same document. The middle horizontal line is the unconditional probability. The top (bottom) line is the
probability of ’SHARES’ given that ’STOCK’ occurred (did not occur) before in the document.

hundreds of trigger pairs, we were able to draw the following general conclusions:

1. Different trigger pairs display different behavior, and hence should be modeled differently. More
detailed modeling should be used when the expected return is higher.

2. Self triggers (i.e. triggers of the form (A A)) are particularly powerful and robust. In fact, for more
than two thirds of the words, the highest-MI trigger proved to be the word itself. For 90% of the words,
the self-trigger was among the top 6 triggers.

3. Same-root triggers are also generally powerful, depending on the frequency of their inflection.

4. Most of the potential of triggers is concentrated in high-frequency words. (STOCK BOND) is indeed
much more useful than (BREST LITOVSK).

6
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P( WINTER )

P( WINTER  |  SUMMER )

P( WINTER )

C( SUMMER )0 1 2 3 4+

Figure 3: Probability of ’WINTER’ as a function of the number of times ’SUMMER’ occurred before it in
the same document. Horizontal lines are as in fig. 2.

5. When the trigger and triggered words are from different domains of discourse, the trigger pair actually
shows some slight mutual information. The occurrence of a word like ’STOCK’ signifies that the doc-
ument is probably concerned with financial issues, thus reducing the probability of words characteristic
of other domains. Such negative triggers can in principle be exploited in much the same way as regular,
“positive” triggers. However, the amount of information they provide is typically very small.

2.6 Syntactic Constraints

Syntactic constraints are varied. They can be expressed as yes/no decisions about grammaticality, or, more
cautiously, as scores, with very low scores assigned to ungrammatical utterances.

The extraction of syntactic information would typically involve a parser. Unfortunately, parsing of
general English with reasonable coverage is not currently attainable. As an alternative, phrase parsing can
be used. Another possibility is loose semantic parsing ([Ward 90, Ward 91]), extracting syntactic-semantic
information.

The information content of syntactic constraints is hard to measure quantitatively. But they are likely to
be very beneficial. This is because this knowledge source seems complementary to the statistical knowledge
sources we can currently tame. Many of the speech recognizer’s errors are easily identified as such by humans
because they violate basic syntactic constraints.

3 Combining Information Sources

Once the desired information sources are identified and the phenomena to be modeled are determined, one
main issue still needs to be addressed. Given the part of the document processed so far (h), and a word w
considered for the next position, there are many different estimates of P(w h). These estimates are derived

7
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Feature selection
• Want to filter many possible (A,B) trigger pairs

• Mutual information to score them:

14

2.5.2 The Concept of a Trigger Pair

Based on the above evidence, we chose the trigger pair as the basic information bearing element for extracting
information from the long-distance document history ([Rosenfeld 92]). If a word sequence A is significantly
correlated with another word sequence B, then (A B) is considered a “trigger pair”, with A being the trigger
and B the triggered sequence. When A occurs in the document, it triggers B, causing its probability estimate
to change.

How should trigger pairs be selected for inclusion in a model? Even if we restrict our attention to trigger
pairs where A and B are both single words, the number of such pairs is too large. Let V be the size of the
vocabulary. Note that, unlike in a bigram model, where the number of different consecutive word pairs is
much less than V2, the number of word pairs where both words occurred in the same document is a significant
fraction of V2.

Our goal is to estimate probabilities of the form P(h w) or P(w h). We are thus interested in correlations
between the current word w and features in the history h. For clarity of exposition, we will concentrate on
trigger relationships between single words, although the ideas carry over to longer sequences. Let W be any
given word. Define the events W andW over the joint event space (h w) as follows:

W : W=w, i.e. W is the next word.
W : W h i.e. W occurred anywhere in the document’s history

When considering a particular trigger pair (A B), we are interested in the correlation between the
event A and the event B. We can assess the significance of the correlation between A and B by measuring
their cross product ratio. But significance or even extent of correlation are not enough in determining the
utility of a proposed trigger pair. Consider a highly correlated trigger pair consisting of two rare words, such
as (BREST LITOVSK), and compare it to a less-well-correlated, but much more common pair3, such as
(STOCK BOND). The occurrence of BREST provides much more information about LITOVSK than the
occurrence of STOCKdoes about BOND. Therefore, an occurrence of BREST in the test data can be expected
to benefit our modeling more than an occurrence of STOCK. But since STOCK is likely to be much more
common in the test data, its average utility may very well be higher. If we can afford to incorporate only one
of the two trigger pairs into our model, (STOCK BOND) may be preferable.

A good measure of the expected benefit provided by A in predicting B is the average mutual information
between the two (see for example [Abramson 63, p.106]):

I(A :B) = P(A B) log P(B A )
P(B) + P(A B) log P(B A )

P(B)

+ P(A B) log
P(B A )
P(B) + P(A B) log

P(B A )
P(B)

(5)

In a related work, [Church and Hanks 90] uses a variant of the first term of equation 5 to automatically
identify co-locational constraints.

2.5.3 Detailed Trigger Relations

In the trigger relations considered so far, each trigger pair partitioned the history into two classes, based on
whether the trigger occurred or did not occur in it (call these triggers binary). One might wish to model
long-distance relationships between word sequences in more detail. For example, one might wish to consider
how far back in the history the trigger last occurred, or how many times it occurred. In the last case, for
example, the space of all possible histories is partitioned into several ( 2) classes, each corresponding to
a particular number of times a trigger occurred. Equation 5 can then be modified to measure the amount of
information conveyed on average by this many-way classification.

3in the WSJ corpus, at least.

5

• Self-triggers (A->A): 90% of words, self-trigger among top 6

• “Burstiness” or overdispersion in language

• Same-root triggers mentioned also
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• + Very general

• + Easy (train λ with EM: latent “switching” variable)

• – Doesn’t best combine information optimally

• Can’t increase “sharpness”

• – Too many submodels

from the different knowledge sources. How does one combine them all to form one optimal estimate? We
discuss existing solutions in this section, and propose a new one in the next.

3.1 Linear Interpolation

Given k models Pi(w h) i=1...k, we can combine them linearly with:

PCOMBINED(w h) def=
k

i=1
iPi(w h) (6)

where 0 i 1 and i i = 1.
This method can be used both as a way of combining knowledge sources, and as a way of smoothing (when

one of the component models is very “flat”, such as a uniform distribution). An Estimation-Maximization
(EM) type algorithm ([Dempster et al. 77]) is typically used to determine these weights. The result is a set of
weights that is provably optimal with regard to the data used for its optimization. See [Jelinek and Mercer 80]
for more details, and [Rosenfeld 94b] for further exposition.

Linear interpolation has very significant advantages, which make it the method of choice in many
situations:

Linear Interpolation is extremely general. Any language model can be used as a component. In fact,
once a common set of heldout data is selected for weight optimization, the component models need
no longer be maintained explicitly. Instead, they can be represented in terms of the probabilities they
assign to the heldout data. Each model is represented as an array of probabilities. The EM algorithm
simply looks for a linear combination of these arrays that would minimize perplexity, and is completely
unaware of their origin.

Linear interpolation is easy to implement, experiment with, and analyze. Wehavecreated aninterpolate
program that takes any number of probability streams, and an optional bin-partitioning stream, and
runs the EM algorithm to convergence (see [Rosenfeld 94b, Appendix B]). We have used the program
to experiment with many different component models and bin-classification schemes. Some of our
general conclusions are:

1. The exact value of the weights does not significantly affect perplexity. Weights need only be
specified to within 5% accuracy.

2. Very little heldout data (several thousand words per weight or less) are enough to arrive at
reasonable weights.

Linear interpolation cannot hurt. The interpolated model is guaranteed to be no worse than any of its
components. This is because each of the components can be viewed as a special case of the interpolation,
with a weight of 1 for that component and 0 for all others. Strictly speaking, this is only guaranteed for
the heldout data, not for new data. But if the heldout data set is large enough, the result will carry over.
So, if we suspect that a new knowledge source can contribute to our current model, the quickest way to
test it would be to build a simple model that uses that source, and to interpolate it with our current one.
If the new source is not useful, it will simply be assigned a very small weight by the EM algorithm
([Jelinek 89]).

Linear interpolation is so advantageous because it reconciliates the different information sources in a
straightforward and simple-minded way. But that simple-mindedness is also the source of its weaknesses:

Linearly interpolated models make suboptimal use of their components. The different information sources
are consulted “blindly”, without regard to their strengths and weaknesses in particular contexts. Their

8

How to combine cues?
• Linear interpolation  (k models, λ≥0,  ∑iλ=1)
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or we might condition on the fact that the word grammatical does appear in the
context:

P (W
i

= model|W
j

= grammatical for some j 2 {1 . . . (i� 1)})

In short, all kinds of information in the context might be useful in estimating the
probability of a particular word (e.g., model) in that context.

A naive way to use this information would be to simply extend the methods
that we saw for trigram language models. Rather than combining three estimates,
based on trigram, bigram, and unigram estimates, we would combine a much larger
set of estimates. We would again estimate � parameters reflecting the importance
or weight of each estimate. The resulting estimator would take something like the
following form (this is intended as a sketch only):

p(model|w1, . . . wi�1) =

�1 ⇥ q
ML

(model|w
i�2 = any, w

i�1 = statistical) +
�2 ⇥ q

ML

(model|w
i�1 = statistical) +

�3 ⇥ q
ML

(model) +
�4 ⇥ q

ML

(model|w
i�2 = any) +

�5 ⇥ q
ML

(model|w
i�1 is an adjective) +

�6 ⇥ q
ML

(model|w
i�1 ends in “ical”) +

�7 ⇥ q
ML

(model|“model” does not occur somewhere in w1, . . . wi�1) +

�8 ⇥ q
ML

(model|“grammatical” occurs somewhere in w1, . . . wi�1) +

. . .

The problem is that the linear interpolation approach becomes extremely unwieldy
as we add more and more pieces of conditioning information. In practice, it is
very difficult to extend this approach beyond the case where we small number of
estimates that fall into a natural hierarchy (e.g., unigram, bigram, trigram esti-
mates). In contrast, we will see that log-linear models offer a much more satisfac-
tory method for incorporating multiple pieces of contextual information.

3 A Second Example: Part-of-speech Tagging

Our second example concerns part-of-speech tagging. Consider the problem where
the context is a sequence of words w1 . . . wn

, together with a sequence of tags,
t1 . . . ti�1 (here i < n), and our task is to model the conditional distribution over
the i’th tag in the sequence. That is, we wish to model the conditional distribution

P (T
i

= t
i

|T1 = t1 . . . Ti�1 = t
i�1,W1 = w1 . . .Wn

= w
n

)

3

Example 
(Collins notes)
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MaxEnt / Log-Linear models
• x: input  (all previous words)

• y: output  (next word)

• f(x,y) => Rd feature function [[domain knowledge here!]]

• v:  Rd  parameter vector (weights)For any x 2 X , y 2 Y , the model defines a condtional probability

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

Here exp(x) = ex, and v ·f(x, y) =
P

d

k=1 vkfk(x, y) is the inner product between
v and f(x, y). The term p(y|x; v) is intended to be read as “the probability of y
conditioned on x, under parameter values v”.

We now describe the components of the model in more detail, first focusing on
the feature-vector definitions f(x, y), then giving intuition behind the model form

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

5 Features

As described in the previous section, for any pair (x, y), f(x, y) 2 Rd is a feature
vector representing that pair. Each component f

k

(x, y) for k = 1 . . . d in this vector
is referred to as a feature. The features allows us to represent different properties
of the input x, in conjunction with the label y. Each feature has an associated
parameter, v

k

, whose value is estimated using a set of training examples. The
training set consists of a sequence of examples (x(i), y(i)) for i = 1 . . . n, where
each x(i) 2 X , and each y(i) 2 Y .

In this section we first give an example of how features can be constructed for
the language modeling problem, as introduced earlier in this note; we then describe
some practical issues in defining features.

5.1 Features for the Language Modeling Example

Consider again the language modeling problem, where the input x is a sequence of
words w1w2 . . . wi�1, and the label y is a word. Figure 1 shows a set of example
features for this problem. Each feature is an indicator function: that is, each feature
is a function that returns either 1 or 0. It is extremely common in NLP applications
to have indicator functions as features. Each feature returns the value of 1 if some
property of the input x conjoined with the label y is true, and 0 otherwise.

The first three features, f1, f2, and f3, are analogous to unigram, bigram, and
trigram features in a regular trigram language model. The first feature returns 1 if
the label y is equal to the word model, and 0 otherwise. The second feature returns
1 if the bigram hw

i�1 yi is equal to hstatistical modeli, and 0 otherwise. The third
feature returns 1 if the trigram hw

i�2 w
i�1 yi is equal to hany statistical modeli,

6

P (w1..wT ) =

Y

t

P (wt | w1..wt�1)

=

Y

t

exp(v · f(w1..wt�1, wt))P
w2V exp(v · f(w1..wt�1, w))

Application to history-based LM:
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f1(x, y) =

⇢
1 if y = model

0 otherwise

f2(x, y) =

⇢
1 if y = model and wi�1 = statistical

0 otherwise

f3(x, y) =

⇢
1 if y = model, wi�2 = any, wi�1 = statistical

0 otherwise

f4(x, y) =

⇢
1 if y = model, wi�2 = any

0 otherwise

f5(x, y) =

⇢
1 if y = model, wi�1 is an adjective
0 otherwise

f6(x, y) =

⇢
1 if y = model, wi�1 ends in “ical”
0 otherwise

f7(x, y) =

⇢
1 if y = model, “model” is not in w1, . . . wi�1

0 otherwise

f8(x, y) =

⇢
1 if y = model, “grammatical” is in w1, . . . wi�1

0 otherwise

Figure 1: Example features for the language modeling problem, where the input x
is a sequence of words w1w2 . . . wi�1, and the label y is a word.

7
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Feature templates

• Generate large collection of features from single template

• Not part of (standard) log-linear mathematics, but how you 
actually build these things

• e.g. Trigram feature template:
For every (u,v,w) trigram in training data, create feature

18

ing data, create a feature

f
N(u,v,w)(x, y) =

(
1 if y = w, w

i�2 = u, w
i�1 = v

0 otherwise

where N(u, v, w) is a function that maps each trigram in the training data to a
unique integer.

A couple of notes on this definition:

• Note that the template only generates trigram features for those trigrams
seen in training data. There are two reasons for this restriction. First, it is
not feasible to generate a feature for every possible trigram, even those not
seen in training data: this would lead to V 3 features, where V is the number
of words in the vocabulary, which is a very large set of features. Second, for
any trigram (u, v, w) not seen in training data, we do not have evidence to
estimate the associated parameter value, so there is no point including it in
any case.1

• The function N(u, v, w) maps each trigram to a unique integer: that is, it
is a function such that for any trigrams (u, v, w) and (u0, v0, w0

) such that
u 6= u0, v 6= v0, or w 6= w0, we have

N(u, v, w) 6= N(u0, v0, w0
)

In practice, in implementations of feature templates, the function N is imple-
mented through a hash function. For example, we could use a hash table to
hash strings such as trigram=any statistical model to integers.
Each distinct string is hashed to a different integer.

Continuing with the example, we can also define bigram and unigram feature
templates:

Definition 3 (Bigram feature template) For any bigram (v, w) seen in training
data, create a feature

f
N(v,w)(x, y) =

(
1 if y = w, w

i�1 = v
0 otherwise

where N(v, w) maps each bigram to a unique integer.
1This isn’t quite accurate: there may in fact be reasons for including features for trigrams

(u, v, w) where the bigram (u, v) is observed in the training data, but the trigram (u, v, w) is not
observed in the training data. We defer discussion of this until later.

9

• Feature template for long-distance triggers?
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