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We would like to maximize incomplete data loglikelihood for seen data x, latent variables z, and
model parameters θ. (Latent variables are local to an instance, but parameters cut across the
dataset.) Unfortunately the sum inside the log is hard to deal with.

`(θ) = log p(x|θ) = log
∑

z

p(x, z|θ) =
∑

i

log
∑

zi

p(xi, zi|θ)

Assume we have a model where, if only we knew the z’s, it would be easy. That is, assume
we have a good algorithm to maximize the complete likelihood maxθ log p(x, z|θ), when z is known
and fixed. This motivates why we want to derive EM in the first place.

EM derivation: add in a qi(z)/qi(z) term (weird special local probabilities for the latent vari-
ables, for every instance) and apply Jensen’s inequality to get the EM bound.

`(θ) =
∑

i

log
∑

zi

qi(zi)

qi(zi)
p(xi, zi|θ) (1)

≥
∑

i

∑

zi

qi(zi)[log p(xi, zi|θ)− log qi(zi)] (2)

≡ J(q, θ) (≡
∑

i

Ji) (3)

J consists of weighted complete-loglikelihood, plus the entropy of q. EM is coordinate ascent
on J . Maximizing for θ (the M-step) is simply maximizing weighted log-likelihood, since the q
entropy term drops out. (For counting-based estimation, this is simply weighted counting. For
gradient-based estimation, this is simply weighted gradient calculation.) Maximizing for q (the
E-step) leads to setting q to local posteriors. This is because, since p(x, z) = p(z|x)p(x), rewrite as

Ji =
∑

z

q(z) log[p(z|x)p(x)/q(z)] = −D(q(z) || p(z|x)) + log p(x)

where the first term is the negative KL divergence between q(z) and p(z|x); to maximize Ji, the
p(x) term is irrelevant to q, so set q(z) := p(z|x) to minimize the KL divergence to zero. Thus the
EM steps are

• E-step: set all qi(zi) := p(zi|xi, θ)

• M-step: learn new θ := argmaxθ
∑

i

∑
zi
qi(zi) log p(xi, zi|θ)

Or as one big equation,

θ(new) := argmax
θ

∑

i

∑

zi

p(zi|xi, θ(old)) log p(xi, zi|θ)

In mixture models, p(x, z|θ) = p(z|θ)p(x|z, θ). The qi(z) local posteriors therefore are different than
the mixture priors p(z|θ). When you update the prior parameters (mixture proportions), that’s the
average across all instances—at any local instance your belief is much different. Also in the E-step
you’ll want to use Bayes rule, p(z|x) ∝ p(z)p(x|z).
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There are two ways to break down the J objective:

Jensen’s Ineq

Nonpositive

`(✓) ⌘ log p✓(X) =
X

i

log p✓(xi) =
X

i

log
X

zi

p✓(xi, zi)

=
X

i

log
X

zi

qi(zi)

qi(zi)
p✓(xi, zi)

`(✓) �
X

i

X

zi

qi(zi) log


1

qi(zi)
p✓(zi|xi) p✓(xi)

�

J(Q, ✓) ⌘ �EQ log Q(Z) + EQ log p✓(Z|X) + log p✓(X)

�KL(Q || p✓(Z|X))

EQ log p✓(X, Z)

Weighted LL

`(✓)

H(Q)

Entropy
M-step

max
✓

J(Q, ✓)

E-step
max

Q
J(Q, ✓)

) Q := P✓(Z|X)

The E-step makes the bound tight for the current θ since it achieves KL = 0. Thus after the E-step,
a Q has been chosen such that

J(Q, θ(cur)) = `(θ(cur))

Thus every iteration of EM results in a θ with a higher log-likelihood.
See also Neal and Hinton 1998, Murphy 2012 chs 11 and 21, MacKay 2003, and http://

cs229.stanford.edu/notes/cs229-notes8.pdf.
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