
Syntactic Dependencies (I)

CS 690N, Spring 2017
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Tuesday, March 21, 17

http://people.cs.umass.edu/~brenocon/anlp2017/
http://people.cs.umass.edu/~brenocon/anlp2017/

Dependency parsing in action

Dependency parsing is used in many real-world applications,
like question answering (Cui et al, 2005):

What % of the nation’s cheese does Wisconsin produce?

In Wisconsin, where farmers produce 28 % of the nation’s cheese, . . .

[Example: Jacob Eisenstein]
Tuesday, March 21, 17

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes
https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency parsing in action

Dependency parsing is used in many real-world applications,
like question answering (Cui et al, 2005):

What % of the nation’s cheese does Wisconsin produce?

In Wisconsin, where farmers produce 28 % of the nation’s cheese, . . .

[Example: Jacob Eisenstein]
Tuesday, March 21, 17

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes
https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency parsing in action

Dependency parsing is used in many real-world applications,
like question answering (Cui et al, 2005):

What % of the nation’s cheese does Wisconsin produce?

In Wisconsin, where farmers produce 28 % of the nation’s cheese, . . .

[Example: Jacob Eisenstein]
Tuesday, March 21, 17

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes
https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency parsing in action

Question answering works by searching for statements which
match well against the query.

I In the surface form of the question, produce and % are six
words apart.

I But in the dependency parse, they’re adjacent.

What % of the nation’s cheese does Wisconsin produce?

[Example: Jacob Eisenstein]
Tuesday, March 21, 17

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes
https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Projectivity

In projective dependency parsing, there are no crossing edges.
I Crossing edges are rare in English:

She ate a pizza yesterday which was vegetarian

I They are more common in other languages, like Czech:2

2figure from (Nivre 2007) [Example: Jacob Eisenstein]
Tuesday, March 21, 17

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes
https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Projectivity

In projective dependency parsing, there are no crossing edges.
I Crossing edges are rare in English:

She ate a pizza yesterday which was vegetarian

I They are more common in other languages, like Czech:2

2figure from (Nivre 2007) [Example: Jacob Eisenstein]
Tuesday, March 21, 17

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes
https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Constits -> Deps

• Every phrase has a head word. It dominates all other
words of that phrase in the dep. graph.

• Head rules: for every nonterminal in tree, choose one of
its children to be its “head”. This will define head words.

• Every nonterminal type has a different head rule;
e.g. from Collins (1997):

8

• If parent is NP,

• Search from right-to-left for first child that’s NN,
NNP, NNPS, NNS, NX, JJR

• Else: search left-to-right for first child which is NP

Tuesday, March 21, 17

9

Adding Headwords to Trees

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

+

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

Tuesday, March 21, 17

10

• Dependencies tend to be less specific than
constituent structure

224 CHAPTER 12. DEPENDENCY PARSING

VP

PP

with a fork

PP

on the table

NP

dinner

V

ate

(a) Flat

VP

PP

with a fork

VP

PP

on the table

VP

NP

dinner

V

ate

(b) Two-level (PTB-style)

VP

PP

with a fork

PP

on the table

VP

NP

dinner

V

ate

(c) Chomsky adjunction

ate dinner on the table with a fork

(d) Dependency representation

Figure 12.3: The three different CFG analyses of this verb phrase all correspond to a single
dependency structure.

shown in Figure 12.3d, these three cases all look the same in a dependency parse. So
if you didn’t think there was any meaningful difference between these three constituent
representations, you may view this as an advantage of the dependency representation.

Dependency grammar still leaves open some tricky representational decisions. For
example, coordination is a challenge: in the sentence, Abigail and Max like kimchi (Fig-
ure 12.4), which word is the immediate dependent of the main verb likes? Choosing ei-
ther Abigail or Max seems arbitrary; for fairness we might choose and, but this seems in
some ways to be the least important word in the noun phrase. One typical solution is
to simply choose the left-most item in the coordinated structure — in this case, Abigail.
Another alternative, as shown in Figure 12.4c, is a collapsed dependency grammar in
which conjunctions are not included as nodes in the graph, but are instead used to label
the edges (De Marneffe et al., 2006). Popel et al. (2013) survey alternatives for handling
this phenomenon across several dependency treebanks.

The same logic that makes us reluctant to accept and as the head of a coordinated noun
phrase may also make us reluctant to accept a preposition as the head of a prepositional
phrase. In the sentence cats scratch people with claws, surely the word claws is more cen-
tral than the word with — and it is precisely the bilexical relations between scratch, claws,
and people that help guide us to the correct syntactic interpretation. Yet there are also
arguments for preferring the preposition as the head — as we saw in section 11.5, the
preposition itself is what helps us to choose verb attachment in meet the President on Mon-
day and noun attachment in meet the President of Mexico. Collapsed dependency grammar

(c) Jacob Eisenstein 2014-2017. Work in progress.

[Example: Jacob Eisenstein]
Tuesday, March 21, 17

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes
https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Projectivity
• Projectivity: no crossing arcs.

Corresponds to neatly nested constituencies

• Non-projective example:

11

226 CHAPTER 12. DEPENDENCY PARSING

She ate a pizza yesterday which was vegetarian

Figure 12.5: An example of a non-projective dependency parse in English

common, such as Czech and German, it is better to annotate dependency trees directly,
rather than deriving them from constituent parses. An example is the Prague Depen-
dency Treebank (Böhmová et al., 2003), which contains 1.5 million words of Czech, with
approximately 12,000 non-projective edges (see Table 12.1). Even though relatively few
dependencies are non-projective in Czech and German, many sentences have at least one
such dependency.

As we will see in the next section, projectivity has important consequences for the
sorts of algorithms that can perform dependency parsing.

12.2 Graph-based dependency parsing

Let y = {hi, j, ri} indicate a dependency graph with relation r from head word w
i

to
dependent word w

j

. We would like to define a scoring function ✓

>
f(y,w), where f(y,w)

is a vector of features on the dependency graph and sentence, and ✓ is a vector of weights.
The dependency parsing problem is then the structure prediction problem,

ŷ = argmaxy 2 Y(w)✓>
f(y,w). (12.1)

As usual, the number of possible labelings Y(w) is exponential in the length of the
input. In the case of non-projective dependency parsing, the set Y(w) includes all possible
spanning trees over a complete graph with M nodes, where M is the length of the sentence
w. The size of this set is MM�2 (Wu and Chao, 2004). Algorithms that search over this
space of possible graphs are known as graph-based dependency parsers.

In sequence labeling and constituent parsing, it was possible to search efficiently over
an exponential space by choosing a feature function that decomposes into a sum of local
feature vectors. A similar approach is possible for dependency parsing, by requiring the

(c) Jacob Eisenstein 2014-2017. Work in progress.

12.1. DEPENDENCY GRAMMAR 225

Abigail and Max like kimchi

(a) The leftmost coordinated
item is the head.

Abigail and Max like kimchi

(b) The coordinating conjunc-
tion is the head.

Abigail and Max like kimchi

and

(c) The coordinating conjunction
is “collapsed” out.

Figure 12.4: Three alternatives for representing coordination in a dependency parse

% non-projective edges % non-projective sentences

Czech 1.86% 22.42%
English 0.39% 7.63%
German 2.33% 28.19%

Table 12.1: Frequency of non-projective dependencies in three languages (Kuhlmann and
Nivre, 2010)

is again a possible solution: we can collapse out the prepositions so that the dependency
chain,

President !
prep

of !
pobj

Mexico

would be replaced by President !
PREP :of

Mexico.

Projectivity

The dependency graphs that can be built from all possible lexicalized constituent parses of
a sentence with M words are a proper subset of the spanning trees over M nodes. In other
words, there exist spanning trees that do not correspond to any lexicalized constituent
parse. This is because syntactic constituents are contiguous spans of text, so that the head
h of the constituent that spans the nodes from i to j must have a path to every node in this
span. This property is known as projectivity. Informally, it means that “crossing edges”
are prohibited. The formal definition follows:

Definition 2 (Projectivity). An edge from i to j is projective iff all k between i and j are descen-
dants of i. A dependency parse is projective iff all its edges are projective.

If we were to annotate a dependency parse directly — rather than deriving it from a
lexicalized constituent parse — such non-projective edges would occur. Figure 12.5 gives
an example of a non-projective dependency graph in English. This dependency graph
does not correspond to any constituent parse. In languages where non-projectivity is

(c) Jacob Eisenstein 2014-2017. Work in progress.

[Example: Jacob Eisenstein]
Tuesday, March 21, 17

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes
https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Parsing to dependencies

• Constituents -> Dependency conversion is one
approach

• Direct dependency parsing more common

• Annotating dependencies is easier

• Algorithmic approaches

• Graph-based: global CRF-style models

• History-based: shift-reduce (Nivre)

12

Tuesday, March 21, 17

Graph-based parsing

13

Introduction

Graph-Based Dependency Parsing

����

���

��	

���� �
�

�

�

�

��

�

�

����

���

��	

����

�

�

�

Recent Advances in Dependency Parsing 3(58)

Inference: dynamic programming, (argmax) minimum spanning trees,
(expectations) matrix tree theorem
Learning: structured perceptron/svm or crf loglik

Edge scoring models

[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Graph-based parsing

14

Inference: integer linear programs, gibbs sampling, easy-first ...
Learning: structured perceptron/svm or crf loglik

gorithms are therefore likely to be able to leverage
at least some of this potential. We demonstrate be-
low that this is indeed so.

Our methods are trained within the max-margin
framework. As a result, we are expected to find
the highest scoring competing tree for each train-
ing sentence (the “strongest violation”). One may
question therefore whether possible sub-optimal
decoding for some training sentences (finding “a
violation” rather than the “strongest violation”)
impacts the learned parser. To this end, Huang et
al. (2012) have established that weaker violations
do suffice for separable training sets.

5 Experimental Setup

Dataset and Evaluation Measures We evalu-
ate our model on CoNLL dependency treebanks
for 14 different languages (Buchholz and Marsi,
2006; Surdeanu et al., 2008), using standard train-
ing and testing splits. We use part-of-speech tags
and the morphological information provided in the
corpus. Following standard practice, we use Unla-
beled Attachment Score (UAS) excluding punctu-
ation (Koo et al., 2010; Martins et al., 2013) as the
evaluation metric in all our experiments.

Baselines We compare our model with the Tur-
boParser (Martins et al., 2013) and our earlier
sampling-based parser (Zhang et al., 2014). For
both parsers, we directly compare with the re-
cent published results on the CoNLL datasets.
We also compare our parser against the best pub-
lished results for the individual languages in our
datasets. This comparison set includes four ad-
ditional parsers: Martins et al. (2011), Koo et al.
(2010), Zhang et al. (2013) and our tensor-based
parser (Lei et al., 2014).

Features We use the same feature templates as
in our prior work (Zhang et al., 2014; Lei et al.,
2014)4. Figure 3 shows the first- to third-order
feature templates that we use in our model. For
the global features we use right-branching, coor-
dination, PP attachment, span length, neighbors,
valency and non-projective arcs features.

Implementation Details Following standard
practices, we train our model using the passive-
aggressive online learning algorithm (MIRA)
and parameter averaging (Crammer et al., 2006;

4We refer the readers to Zhang et al. (2014) and Lei et al.
(2014) for the detailed definition of each feature template.

arc!

head bigram!

!h h m m+1

h m

consecutive sibling!

h m s

grandparent!

g h m

grand-sibling!

g h m s

tri-siblings!

h m s t

grand-grandparent!

g h mgg

outer-sibling-grandchild!

h m sgc h s gcm

inner-sibling-grandchild!

Figure 3: First- to third-order features.

Figure 4: Absolute UAS improvement of our full
model over the first-order model. Sentences in the
test set are divided into 2 groups based on their
lengths.

Collins, 2002). By default we use an adaptive
strategy for running the hill-climbing algorithm
– for a given sentence we repeatedly run the al-
gorithm in parallel5 until the best tree does not
change for K = 300 consecutive restarts. For
each restart, by default we initialize the tree y

(0)

by sampling from the first-order distribution us-
ing the current learned parameter values (and first-
order scores). We train our first-order and third-
order model for 10 epochs and our full model for
20 epochs for all languages, and report the average
performance across three independent runs.

6 Results

Comparison with the Baselines Table 4 sum-
marizes the results of our model, along with the
state-of-the-art baselines. On average across 14
languages, our full model with the tensor com-
ponent outperforms both TurboParser and the
sampling-based parser. The direct comparison

5We use 8 threads in all the experiments.

Higher order features: learn e.g. selectional restrictions
Decoding is more difficult

[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Arc-Eager Transition System [Nivre 2003]

Configuration: (S ,B,A) [S = Stack, B = Bu↵er, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })

Terminal: (S , [],A)

Shift: (S , i |B,A)) (S |i ,B,A)

Reduce: (S |i ,B,A)) (S ,B,A) h(i ,A)

Right-Arc(k): (S |i , j |B,A)) (S |i |j ,B,A [{(i , j , k)})

Left-Arc(k): (S |i , j |B,A)) (S , j |B,A [{(j , i , k)}) ¬h(i ,A) ^ i 6= 0

Notation: S|i = stack with top i and remainder S

j |B = bu↵er with head j and remainder B

h(i ,A) = i has a head in A

Recent Advances in Dependency Parsing 6(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [Economic, news, had, little, e↵ect, on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, Economic]S [news, had, little, e↵ect, on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [news, had, little, e↵ect, on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, news]S [had, little, e↵ect, on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT]S [had, little, e↵ect, on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [little, e↵ect, on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, little]S [e↵ect, on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [e↵ect, on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, e↵ect]S [on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, e↵ect, on, financial]S [markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, e↵ect, on]S [markets, .]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, e↵ect, on, markets]S [.]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, e↵ect, on]S [.]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, e↵ect]S [.]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had]S [.]B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Example Transition Sequence

[ROOT, had, .]S []B

ROOT Economic news had little e↵ect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Recent Advances in Dependency Parsing 7(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Greedy Inference

I Given an oracle o that correctly predicts the next transition
o(c), parsing is deterministic:

Parse(w1, . . . ,wn)
1 c ([]S , [0, 1, . . . , n]B , { })
2 while Bc 6= []
3 t o(c)
4 c t(c)
5 return G = ({0, 1, . . . , n},Ac)

I Complexity given by upper bound on number of transitions

I Parsing in O(n) time for the arc-eager transition system

Recent Advances in Dependency Parsing 9(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

From Oracles to Classifiers

I An oracle can be approximated by a (linear) classifier:

o(c) = argmax
t

w · f(c, t)

I History-based feature representation f(c, t)

I Weight vector w learned from treebank data

Recent Advances in Dependency Parsing 10(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, e↵ect]S [on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

word(S2) = ROOT

word(S1) = had
word(S0) = e↵ect
word(B0) = on
word(B1) = financial
word(B2) = markets

I Feature representation unconstrained by parsing algorithm

Recent Advances in Dependency Parsing 11(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, e↵ect]S [on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

dep(S1) = root
dep(lc(S1)) = nsubj
dep(rc(S1)) = dobj
dep(S0) = dobj
dep(lc(S0) = amod
dep(rc(S0) = NIL

I Feature representation unconstrained by parsing algorithm

Recent Advances in Dependency Parsing 11(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, e↵ect]S [on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

ti�1 = Right-Arc(dobj)
ti�2 = Left-Arc(amod)
ti�3 = Shift
ti�4 = Right-Arc(root)
ti�5 = Left-Arc(nsubj)
ti�6 = Shift

I Feature representation unconstrained by parsing algorithm

Recent Advances in Dependency Parsing 11(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, e↵ect]S [on, financial, markets, .]B

ROOT Economic news had little e↵ect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

ti�1 = Right-Arc(dobj)
ti�2 = Left-Arc(amod)
ti�3 = Shift
ti�4 = Right-Arc(root)
ti�5 = Left-Arc(nsubj)
ti�6 = Shift

I Feature representation unconstrained by parsing algorithm

Recent Advances in Dependency Parsing 11(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Transition-Based Dependency Parsing

Local Learning

I Given a treebank:
I Reconstruct oracle transition sequence for each sentence
I Construct training data set D = {(c, t) | o(c) = t}
I Maximize accuracy of local predictions o(c) = t

I Any (unstructured) classifier will do (SVMs are popular)

I Training is local and restricted to oracle configurations

Recent Advances in Dependency Parsing 12(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Linear vs neural features

• Non-stateful approaches

• Nivre (~2003 & others), “MALT”: linear SVM to
make shift-reduce decisions, trained on oracle
decisions

• Chen and Manning (2014): neural softmax, trained
on oracle decisions

• Andors et al. (2016), “SyntaxNet”: similar but with
global normalization (CRF-ish)

• Stateful: Stack LSTM over state transitions
(Dyer et al., like last week)

39

Tuesday, March 21, 17

Transition-Based Dependency Parsing

Greedy, Local, Transition-Based Parsing

I Advantages:
I Highly e�cient parsing – linear time complexity with constant

time oracles and transitions
I Rich history-based feature representations – no rigid

constraints from inference algorithm

I Drawback:
I Sensitive to search errors and error propagation due to greedy

inference and local learning

I The major question in transition-based parsing has been how
to improve learning and inference, while maintaining high
e�ciency and rich feature models

Recent Advances in Dependency Parsing 13(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]
Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

Improved Learning and Inference

Beam Search

I Maintain the k best hypotheses [Johansson and Nugues 2006]:
Parse(w1, . . . ,wn)
1 Beam {([]S , [0, 1, . . . , n]B , { })}
2 while 9c 2 Beam [Bc 6= []]
3 foreach c 2 Beam
4 foreach t
5 Add(t(c), NewBeam)
6 Beam Top(k, NewBeam)
7 return G = ({0, 1, . . . , n},ATop(1,Beam))

I Note:
I Score(c0, . . . , cm) =

Pm
i=1 w · f(ci�1, ti)

I Simple combination of locally normalized classifier scores
I Marginal gains in accuracy

Recent Advances in Dependency Parsing 14(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]

(Beam search can even hurt, since training only on oracle paths)

Tuesday, March 21, 17

http://stp.lingfil.uu.se/~nivre/eacl14.html
http://stp.lingfil.uu.se/~nivre/eacl14.html

State of the art
• Unlabeled attachment scores:

Accuracy of choose-the-parent

• As of 2014, on old CoNLL 2006
data (variable quality)

42

Our Model Exact 1st Turbo Sampling Best Published1st 3rd Fullw/o tensor Full (MA13) (ZL14)
Arabic 78.98 79.95 79.38 80.24 79.22 79.64 80.12 81.12 (MS11)
Bulgarian 92.15 93.38 93.69 93.72 92.24 93.10 93.30 94.02 (ZH13)
Chinese 91.20 93.00 92.76 93.04 91.17 89.98 92.63 92.68 (LX14)
Czech 87.65 90.11 90.34 90.77 87.82 90.32 91.04 91.04 (ZL14)
Danish 90.50 91.43 91.66 91.86 90.56 91.48 91.80 92.00 (ZH13)
Dutch 84.49 86.43 87.04 87.39 84.79 86.19 86.47 86.47 (ZL14)
English 91.85 93.01 93.20 93.25 91.94 93.22 92.94 93.22 (MA13)
German 90.52 91.91 92.64 92.67 90.54 92.41 92.07 92.41 (MA13)
Japanese 93.78 93.80 93.35 93.56 93.74 93.52 93.42 93.74 (LX14)
Portuguese 91.12 92.07 92.60 92.36 91.16 92.69 92.41 93.03 (KR10)
Slovene 84.29 86.48 87.06 86.72 84.15 86.01 86.82 86.95 (MS11)
Spanish 85.52 87.87 88.17 88.75 85.59 85.59 88.24 88.24 (ZL14)
Swedish 89.89 91.17 91.35 91.08 89.78 91.14 90.71 91.62 (ZH13)
Turkish 76.57 76.80 76.13 76.68 76.40 76.90 77.21 77.55 (KR10)
Average 87.75 89.10 89.24 89.44 87.79 88.72 89.23 89.58

Table 4: Results of our model and several state-of-the-art systems. “Best Published UAS” includes the
most accurate parsers among Martins et al. (2011), Martins et al. (2013), Koo et al. (2010), Zhang et
al. (2013), Lei et al. (2014) and Zhang et al. (2014). For the third-order model, we use the feature set
of TurboParser (Martins et al., 2013). The full model combines features of our sampling-based parser
(Zhang et al., 2014) and tensor features (Lei et al., 2014).

Dataset MAP-1st Uniform Rnd-1st
UAS Init. UAS Init. UAS Init.

Slovene 85.2 80.1 86.7 13.7 86.7 34.2
Arabic 78.8 75.1 79.7 12.4 80.2 32.8
English 91.1 82.0 93.3 39.6 93.3 55.6
Chinese 87.2 75.3 93.2 36.8 93.0 54.5
Dutch 84.8 79.5 87.0 26.9 87.4 45.6
Average 85.4 78.4 88.0 25.9 88.1 44.5

Table 5: Comparison between different initializa-
tion strategies: (a) MAP-1st: only the MAP tree
of the first-order score; (b) Uniform: random trees
are sampled from the uniform distribution; and
(c) Rnd-1st: random trees are sampled from the
first-order distribution. For each method, the table
shows the average accuracy of the initial tree and
the final parsing accuracy.

with TurboParser is achieved by restricting our
model to third order features which still outper-
forms TurboParser (89.10% vs 88.72%). To com-
pare against the sampling-based parser, we em-
ploy our model without the tensor component. The
two models achieve a similar average performance
(89.24% and 89.23% respectively). Since relative
parsing performance depends on a target language,
we also include comparison with the best pub-
lished results. The model achieves the best pub-
lished results for seven languages.

Another noteworthy comparison concerns first-
order parsers. As Table 4 shows, the exact and ap-
proximate versions of the first-order parser deliver
almost identical performance.

Impact of High-Order Features Table 4 shows
that the model can effectively utilize high-order
features. Comparing the average performance of
the model variants, we see that the accuracy on
the benchmark languages consistently improves
when higher-order features are added. This char-
acteristic of the randomized greedy parser is in
line with findings about other state-of-the-art high-
order parsers (Martins et al., 2013; Zhang et al.,
2014). Figure 4 breaks down these gains based
on the sentence length. As expected, on most lan-
guages high-order features are particularly helpful
when parsing longer sentences.

Impact of Initialization and Restarts Table 5
shows the impact of initialization on the model
performance for several languages. We consider
three strategies: the MAP estimate of the first-
order score from the model, uniform sampling and
sampling from the first-order distribution. The ac-
curacy of initial trees varies greatly, ranging from
78.4% for the MAP estimate to 25.9% and 44.5%
for the latter randomized strategies. However, the
resulting parsing accuracy is not determined by
the initial accuracy. In fact, the two sampling
strategies result in almost identical parsing perfor-
mance. While the first-order MAP estimate gives
the best initial guess, the overall parsing accuracy
of this method lags behind. This result demon-
strates the importance of restarts – in contrast to
the randomized strategies, the MAP initialization
performs only a single run of hill-climbing.

Our Model Exact 1st Turbo Sampling Best Published1st 3rd Fullw/o tensor Full (MA13) (ZL14)
Arabic 78.98 79.95 79.38 80.24 79.22 79.64 80.12 81.12 (MS11)
Bulgarian 92.15 93.38 93.69 93.72 92.24 93.10 93.30 94.02 (ZH13)
Chinese 91.20 93.00 92.76 93.04 91.17 89.98 92.63 92.68 (LX14)
Czech 87.65 90.11 90.34 90.77 87.82 90.32 91.04 91.04 (ZL14)
Danish 90.50 91.43 91.66 91.86 90.56 91.48 91.80 92.00 (ZH13)
Dutch 84.49 86.43 87.04 87.39 84.79 86.19 86.47 86.47 (ZL14)
English 91.85 93.01 93.20 93.25 91.94 93.22 92.94 93.22 (MA13)
German 90.52 91.91 92.64 92.67 90.54 92.41 92.07 92.41 (MA13)
Japanese 93.78 93.80 93.35 93.56 93.74 93.52 93.42 93.74 (LX14)
Portuguese 91.12 92.07 92.60 92.36 91.16 92.69 92.41 93.03 (KR10)
Slovene 84.29 86.48 87.06 86.72 84.15 86.01 86.82 86.95 (MS11)
Spanish 85.52 87.87 88.17 88.75 85.59 85.59 88.24 88.24 (ZL14)
Swedish 89.89 91.17 91.35 91.08 89.78 91.14 90.71 91.62 (ZH13)
Turkish 76.57 76.80 76.13 76.68 76.40 76.90 77.21 77.55 (KR10)
Average 87.75 89.10 89.24 89.44 87.79 88.72 89.23 89.58

Table 4: Results of our model and several state-of-the-art systems. “Best Published UAS” includes the
most accurate parsers among Martins et al. (2011), Martins et al. (2013), Koo et al. (2010), Zhang et
al. (2013), Lei et al. (2014) and Zhang et al. (2014). For the third-order model, we use the feature set
of TurboParser (Martins et al., 2013). The full model combines features of our sampling-based parser
(Zhang et al., 2014) and tensor features (Lei et al., 2014).

Dataset MAP-1st Uniform Rnd-1st
UAS Init. UAS Init. UAS Init.

Slovene 85.2 80.1 86.7 13.7 86.7 34.2
Arabic 78.8 75.1 79.7 12.4 80.2 32.8
English 91.1 82.0 93.3 39.6 93.3 55.6
Chinese 87.2 75.3 93.2 36.8 93.0 54.5
Dutch 84.8 79.5 87.0 26.9 87.4 45.6
Average 85.4 78.4 88.0 25.9 88.1 44.5

Table 5: Comparison between different initializa-
tion strategies: (a) MAP-1st: only the MAP tree
of the first-order score; (b) Uniform: random trees
are sampled from the uniform distribution; and
(c) Rnd-1st: random trees are sampled from the
first-order distribution. For each method, the table
shows the average accuracy of the initial tree and
the final parsing accuracy.

with TurboParser is achieved by restricting our
model to third order features which still outper-
forms TurboParser (89.10% vs 88.72%). To com-
pare against the sampling-based parser, we em-
ploy our model without the tensor component. The
two models achieve a similar average performance
(89.24% and 89.23% respectively). Since relative
parsing performance depends on a target language,
we also include comparison with the best pub-
lished results. The model achieves the best pub-
lished results for seven languages.

Another noteworthy comparison concerns first-
order parsers. As Table 4 shows, the exact and ap-
proximate versions of the first-order parser deliver
almost identical performance.

Impact of High-Order Features Table 4 shows
that the model can effectively utilize high-order
features. Comparing the average performance of
the model variants, we see that the accuracy on
the benchmark languages consistently improves
when higher-order features are added. This char-
acteristic of the randomized greedy parser is in
line with findings about other state-of-the-art high-
order parsers (Martins et al., 2013; Zhang et al.,
2014). Figure 4 breaks down these gains based
on the sentence length. As expected, on most lan-
guages high-order features are particularly helpful
when parsing longer sentences.

Impact of Initialization and Restarts Table 5
shows the impact of initialization on the model
performance for several languages. We consider
three strategies: the MAP estimate of the first-
order score from the model, uniform sampling and
sampling from the first-order distribution. The ac-
curacy of initial trees varies greatly, ranging from
78.4% for the MAP estimate to 25.9% and 44.5%
for the latter randomized strategies. However, the
resulting parsing accuracy is not determined by
the initial accuracy. In fact, the two sampling
strategies result in almost identical parsing perfor-
mance. While the first-order MAP estimate gives
the best initial guess, the overall parsing accuracy
of this method lags behind. This result demon-
strates the importance of restarts – in contrast to
the randomized strategies, the MAP initialization
performs only a single run of hill-climbing.

Results table from Zhang et al.
http://people.csail.mit.edu/regina/my_papers/rand14.pdf

LAS target language average
de en es fr it pt sv

monolingual 79.3 85.9 83.7 81.7 88.7 85.7 83.5 84.0
MALOPA 70.4 69.3 72.4 71.1 78.0 74.1 65.4 71.5
+lexical 76.7 82.0 82.7 81.2 87.6 82.1 81.2 81.9

+language ID 78.6 84.2 83.4 82.4 89.1 84.2 82.6 83.5
+fine-grained POS 78.9 85.4 84.3 82.4 89.0 86.2 84.5 84.3

Table 3: Dependency parsing: labeled attachment scores (LAS) for monolingually-trained parsers and
MALOPA in the fully supervised scenario where L

t
= L

s. Note that we use the universal dependencies
verson 1.2 which only includes annotations for ⇠13,000 English sentences, which explains the relatively
low scores in English. When we instead use the universal dependency treebanks version 2.0 which includes
annotations for ⇠40,000 English sentences (originally from the English Penn Treebank), we achieve UAS
score 93.0 and LAS score 91.5.

in MALOPA, instead of updating the parameters
with the gradient of individual sentences, we use
mini-batch updates which include one sentence sam-
pled uniformly (without replacement) from each
language’s treebank, until all sentences in the small-
est treebank are used (which concludes an epoch).
We repeat the same process in following epochs.
We found this to help prevent one source language
with a larger treebank (e.g., German) from dominat-
ing parameter updates at the expense of other source
languages with a smaller treebank (e.g., Swedish).

4.1 Target Languages with a Treebank
(Lt

= L

s)

Here, we evaluate our MALOPA parser when the
target language has a treebank.

Baseline. For each target language, the strong
baseline we use is a monolingually-trained S-LSTM
parser with a token representation which concate-
nates: pretrained word embeddings (50 dimen-
sions),18 learned word embeddings (50 dimensions),
coarse (universal) POS tag embeddings (12 dimen-
sions), fine-grained (language-specific, when avail-
able) POS tag embeddings (12 dimensions), and em-
beddings of Brown clusters (12 dimensions), and
uses a two-layer S-LSTM for each of the stack, the
buffer and the list of actions. We independently train
one baseline parser for each target language, and
share no model parameters. This baseline, denoted

18These embeddings are treated as fixed inputs to the parser,
and are not optimized towards the parsing objective. We use the
same embeddings used in Guo et al. (2016).

‘monolingual’ in Tables 3 and 7, achieves UAS score
93.0 and LAS score 91.5 when trained on the En-
glish Penn Treebank, which is comparable to Dyer
et al. (2015).

MALOPA. We train MALOPA on the concante-
nation of training sections of all seven languages. To
balance the development set, we only concatenate
the first 300 sentences of each language’s develop-
ment section.

Token representations. The first MAL-
OPA parser we evaluate uses only coarse POS
embeddings to construct the token representation.19

As shown in Table 3, this parser consistently
underperforms the monolingual baselines, with a
gap of 12.5 LAS points on average.

Augmenting the token representation with lexical
embeddings to the token representation (both mul-
tilingual word clusters and pretrained multilingual
word embeddings, as described in §3.3) substan-
tially improves the performance of MALOPA, re-
covering 83% of the gap in average performance.

We experimented with three ways to include
language information in the token representation,
namely: ‘language ID’, ‘word order’ and ‘full ty-
pology’ (see §3.4 for details), and found all three
to improve the performance of MALOPA giving
LAS scores 83.5, 83.2 and 82.5, respectively. It is
noteworthy that the model benefits more from lan-

19We use the same number of dimensions for the coarse POS
embeddings as in the monolingual baselines. The same applies
to all other types of embeddings used in MALOPA.

• Labeled attachment scores

• On newer “Universal Dependencies”
data (higher quality??) with stack
LSTM shift-reduce model

Results from Ammar et al.
https://arxiv.org/pdf/1602.01595.pdf

• CoNLL 2017 shared task right now...
http://universaldependencies.org/
conll17/

Tuesday, March 21, 17

http://people.csail.mit.edu/regina/my_papers/rand14.pdf
http://people.csail.mit.edu/regina/my_papers/rand14.pdf
https://arxiv.org/pdf/1602.01595.pdf
https://arxiv.org/pdf/1602.01595.pdf
http://universaldependencies.org/conll17/
http://universaldependencies.org/conll17/
http://universaldependencies.org/conll17/
http://universaldependencies.org/conll17/

