Syntactic Dependencies (I)

CS 690N, Spring 2017

Advanced Natural Language Processing http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

Dependency parsing is used in many real-world applications, like question answering (Cui et al, 2005):

Dependency parsing is used in many real-world applications, like question answering (Cui et al, 2005):

Image: Second Second

Dependency parsing is used in many real-world applications, like question answering (Cui et al, 2005):

Image: Second Second

Question answering works by searching for statements which match well against the query.

- In the surface form of the question, produce and % are six words apart.
- But in the dependency parse, they're adjacent.

Image: Second Second

Projectivity

In projective dependency parsing, there are no crossing edges.

Crossing edges are rare in English:

²figure from (Nivre 2007)

Projectivity

- In projective dependency parsing, there are no crossing edges.
 - Crossing edges are rare in English:

► They are more common in other languages, like Czech:²

Constits -> Deps

- Every phrase has a head word. It dominates all other words of that phrase in the dep. graph.
- Head rules: for every nonterminal in tree, choose one of its children to be its "head". This will define head words.
- Every nonterminal type has a different head rule; e.g. from Collins (1997):

- If parent is NP,
 - Search from right-to-left for first child that's NN, NNP, NNPS, NNS, NX, JJR
 - Else: search left-to-right for first child which is NP

Projectivity

- Projectivity: no crossing arcs.
 Corresponds to neatly nested constituencies
- Non-projective example:

	% non-projective edges	% non-projective sentences
Czech	1.86%	22.42%
English	0.39%	7.63%
German	2.33%	28.19%

Table 12.1: Frequency of non-projective dependencies in three languages (Kuhlmann and Nivre, 2010)

Parsing to dependencies

- Constituents -> Dependency conversion is one approach
- Direct dependency parsing more common
 - Annotating dependencies is easier
- Algorithmic approaches
 - Graph-based: global CRF-style models
 - History-based: shift-reduce (Nivre)

Graph-based parsing Edge scoring models

<u>Inference</u>: dynamic programming, (argmax) minimum spanning trees, (expectations) matrix tree theorem <u>Learning</u>: structured perceptron/svm or crf loglik

13 [Slides: <u>McDonald and Nivre, EACL 2014 tutorial</u>]

Graph-based parsing

Higher order features: learn e.g. selectional restrictions Decoding is more difficult

<u>Inference</u>: integer linear programs, gibbs sampling, easy-first ... <u>Learning</u>: structured perceptron/svm or crf loglik

Arc-Eager Transition System [Nivre 2003]

Configuration:	(S, B, A) [.	S=S	Stack, $B = Buffer$, $A = A$	rcs]
Initial:	$([], [0, 1,, n], \{ \})$			
Terminal:	(<i>S</i> ,[], <i>A</i>)			
Shift:	(S, i B, A)	\Rightarrow	(S i, B, A)	
Reduce:	(S i, B, A)	\Rightarrow	(S, B, A)	h(i, A)
Right-Arc(k):	(S i,j B,A)	\Rightarrow	$(S i j, B, A \cup \{(i, j, k)\})$	
Left-Arc(k):	(S i,j B,A)	\Rightarrow	$(S,j B,A\cup\{(j,i,k)\})$	$ eg h(i, A) \land i \neq 0$

Notation: S|i = stack with top i and remainder Sj|B = buffer with head j and remainder Bh(i, A) = i has a head in A

[ROOT]_S [Economic, news, had, little, effect, on, financial, markets, .]_B

ROOT Economic news had little effect on financial markets adj noun verb adj noun prep adj noun

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, Economic]_S [news, had, little, effect, on, financial, markets, $]_B$

ROOT Economic news had little effect on financial markets adj noun verb adj noun prep adj noun

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT]_S [news, had, little, effect, on, financial, markets, .]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, news]_S [had, little, effect, on, financial, markets, .]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT]_S [had, little, effect, on, financial, markets, .]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had]_S [little, effect, on, financial, markets, .]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had, little]_S [effect, on, financial, markets, .]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had]_S [effect, on, financial, markets, .]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had, effect]_S [on, financial, markets, .]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had, effect, on, financial]_S [markets, .]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had, effect, on]_S [markets, .]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had, effect, on, markets]_S [.]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had, effect, on]_S [.]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had, effect]_S [.]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had]_S [.]_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

[ROOT, had, .]_S []_B

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

Greedy Inference

Given an oracle o that correctly predicts the next transition o(c), parsing is deterministic:

Parse
$$(w_1, ..., w_n)$$

1 $c \leftarrow ([]_S, [0, 1, ..., n]_B, \{\})$
2 while $B_c \neq []$
3 $t \leftarrow o(c)$
4 $c \leftarrow t(c)$
5 return $G = (\{0, 1, ..., n\}, A_c)$

Complexity given by upper bound on number of transitions

• Parsing in O(n) time for the arc-eager transition system

From Oracles to Classifiers

► An oracle can be approximated by a (linear) classifier:

$$o(c) = \operatorname*{argmax}_{t} \mathbf{w} \cdot \mathbf{f}(c, t)$$

- History-based feature representation $\mathbf{f}(c, t)$
- Weight vector w learned from treebank data

► Features over input tokens relative to *S* and *B*

Configuration

Features

word (S_2) = ROOT word (S_1) = had word (S_0) = effect word (B_0) = on word (B_1) = financial word (B_2) = markets

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

► Features over input tokens relative to *S* and *B*

Features over the (partial) dependency graph defined by A

Configuration

Features

Recent Advances in Dependency Parsing

- Features over input tokens relative to S and B
- Features over the (partial) dependency graph defined by A
- Features over the (partial) transition sequence

Configuration

Features

 $t_{i-1} = \text{Right-Arc(dobj)}$ $t_{i-2} = \text{Left-Arc(amod)}$ $t_{i-3} = \text{Shift}$ $t_{i-4} = \text{Right-Arc(root)}$ $t_{i-5} = \text{Left-Arc(nsubj)}$ $t_{i-6} = \text{Shift}$

11(54)

Recent Advances in Dependency Parsing

[Slides: McDonald and Nivre, EACL 2014 tutorial]

- Features over input tokens relative to S and B
- Features over the (partial) dependency graph defined by A
- Features over the (partial) transition sequence

Configuration

Features

 $t_{i-1} = \text{Right-Arc(dobj)}$ $t_{i-2} = \text{Left-Arc(amod)}$ $t_{i-3} = \text{Shift}$ $t_{i-4} = \text{Right-Arc(root)}$ $t_{i-5} = \text{Left-Arc(nsubj)}$ $t_{i-6} = \text{Shift}$

Feature representation unconstrained by parsing algorithm

Tuesday, March 21, 17

[Slides: McDonald and Nivre, EACL 2014 tutorial]

Local Learning

- Given a treebank:
 - Reconstruct oracle transition sequence for each sentence
 - Construct training data set $D = \{(c, t) | o(c) = t\}$
 - Maximize accuracy of local predictions o(c) = t
- Any (unstructured) classifier will do (SVMs are popular)
- Training is local and restricted to oracle configurations

Linear vs neural features

- Non-stateful approaches
 - Nivre (~2003 & others), "MALT": linear SVM to make shift-reduce decisions, trained on oracle decisions
 - Chen and Manning (2014): neural softmax, trained on oracle decisions
 - Andors et al. (2016), "SyntaxNet": similar but with global normalization (CRF-ish)
- Stateful: Stack LSTM over state transitions (Dyer et al., like last week)

Greedy, Local, Transition-Based Parsing

Advantages:

- Highly efficient parsing linear time complexity with constant time oracles and transitions
- Rich history-based feature representations no rigid constraints from inference algorithm
- Drawback:
 - Sensitive to search errors and error propagation due to greedy inference and local learning
- The major question in transition-based parsing has been how to improve learning and inference, while maintaining high efficiency and rich feature models

Beam Search

Maintain the k best hypotheses [Johansson and Nugues 2006]:

```
Parse(w_1, \ldots, w_n)

1 Beam \leftarrow \{([]_S, [0, 1, \ldots, n]_B, \{\})\}

2 while \exists c \in \text{Beam} [B_c \neq []]

3 foreach c \in \text{Beam}

4 foreach t

5 Add(t(c), \text{NewBeam})

6 Beam \leftarrow \text{Top}(k, \text{NewBeam})

7 return G = (\{0, 1, \ldots, n\}, A_{\text{Top}(1, \text{Beam})})
```

Note:

• Score
$$(c_0,\ldots,c_m) = \sum_{i=1}^m \mathbf{w} \cdot \mathbf{f}(c_{i-1},t_i)$$

- Simple combination of locally normalized classifier scores
- Marginal gains in accuracy

(Beam search can even hurt, since training only on oracle paths)

State of the art

- Unlabeled attachment scores: Accuracy of choose-the-parent
- As of 2014, on old CoNLL 2006 data (variable quality)

	Best Published
Arabic	81.12 (MS11)
Bulgarian	94.02 (ZH13)
Chinese	92.68 (LX14)
Czech	91.04 (ZL14)
Danish	92.00 (ZH13)
Dutch	86.47 (ZL14)
English	93.22 (MA13)
German	92.41 (MA13)
Japanese	93.74 (LX14)
Portuguese	93.03 (KR10)
Slovene	86.95 (MS11)
Spanish	88.24 (ZL14)
Swedish	91.62 (ZH13)
Turkish	77.55 (KR10)
Average	89.58

Results table from Zhang et al. <u>http://people.csail.mit.edu/regina/my_papers/rand14.pdf</u>42

- Labeled attachment scores
- On newer "Universal Dependencies" data (higher quality??) with stack LSTM shift-reduce model

de	en	es	fr	it	pt	SV
79.3	85.9	83.7	81.7	88.7	85.7	83.5

Results from Ammar et al. <u>https://arxiv.org/pdf/1602.01595.pdf</u>

 CoNLL 2017 shared task right now... <u>http://universaldependencies.org/</u> <u>conll17/</u>