
Sequence Labeling & more! (III)

CS 690N, Spring 2017
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Tuesday, February 28, 17

http://people.cs.umass.edu/~brenocon/anlp2017/
http://people.cs.umass.edu/~brenocon/anlp2017/

Random project idea

2

• e.g. the TimeBank-Dense dataset

• “Before 1993, she attended...”

• => BEFORE(attend, 1993-01-01)

• “I got in a car and drove”

• => BEFORE(car, drove)

•Aspectual/subordinate/factive relations

• Hold between events

• “I doubt I left them there”

• Temporal relations

• Goal: extract events from text and have on
timeline -- or at least a partial order

Tuesday, February 28, 17

Temporal Relations
• BEFORE, AFTER, DURING

• R(evt, time)

• R(evt, evt)

• Logical implications: e.g. transitivity

3

[Allen’s interval algebra]

Tuesday, February 28, 17

Forward-Backward

• Purpose: compute

• Tag marginals p(yt | w)

• Pair marginals p(yt-1, yt | w)

• Why?

• Min Bayes Risk decoding

• For each t, choose: argmaxk p(yt=k | w)

• E-step for EM learning of unsupervised HMM

• Feature expectations for supervised CRF

4

Tuesday, February 28, 17

Generalized CRF

• Clique c: set of random variables

• ψc: soft constraint (logprob) among yc

• Linear chain CRF: neighboring cliques only

• Many others possible!

• Higher order Markov

• Global document information

• e.g. repeated words tend to have same label:
one-sense-per-discourse or coreference

5

 c(yc) = ✓

T
fc(yc, x)

p(y | x) / exp

X

c

 c(yc)

!

Tuesday, February 28, 17

Learning a CRF

• Apply local decomposition

log p✓(y | w) = ✓Tf(y, w)� log

X

y0

exp(✓Tf(y, w))

@ log p✓(...)

@✓j
= fj(y, w)�

X

y0

p✓(y
0 | w)fj(y0, w)

Tuesday, February 28, 17

Learning a CRF

• Apply local decomposition

log p✓(y | w) = ✓Tf(y, w)� log

X

y0

exp(✓Tf(y, w))

=

X

t

fj(yt�1, yt, wt)

!
�
X

y0

p✓(y
0 | w)

X

t

fj(y
0
t�1, y

0
t, wt)

@ log p✓(...)

@✓j
= fj(y, w)�

X

y0

p✓(y
0 | w)fj(y0, w)

Tuesday, February 28, 17

Learning a CRF

=
X

t

0

@fj(yt�1, yt, wt)�
X

y0
t,y

0
t�1

p✓(y
0
t�1, y

0
t | w)fj(y0t�1, y

0
t, wt)

1

A

• Apply local decomposition

log p✓(y | w) = ✓Tf(y, w)� log

X

y0

exp(✓Tf(y, w))

=

X

t

fj(yt�1, yt, wt)

!
�
X

y0

p✓(y
0 | w)

X

t

fj(y
0
t�1, y

0
t, wt)

@ log p✓(...)

@✓j
= fj(y, w)�

X

y0

p✓(y
0 | w)fj(y0, w)

Tuesday, February 28, 17

Learning a CRF

=
X

t

0

@fj(yt�1, yt, wt)�
X

y0
t,y

0
t�1

p✓(y
0
t�1, y

0
t | w)fj(y0t�1, y

0
t, wt)

1

A

• Apply local decomposition

log p✓(y | w) = ✓Tf(y, w)� log

X

y0

exp(✓Tf(y, w))

Real feature value Expected feature value

Tag marginals (to compute: forward-backward)

=

X

t

fj(yt�1, yt, wt)

!
�
X

y0

p✓(y
0 | w)

X

t

fj(y
0
t�1, y

0
t, wt)

@ log p✓(...)

@✓j
= fj(y, w)�

X

y0

p✓(y
0 | w)fj(y0, w)

Tuesday, February 28, 17

Semi-Markov CRF
• [Sarawagi and Cohen, 2004]

• Instead of sequence labels, assume
variable length segments

• sj = (start, end, label)

• All positions covered by non-
overlapping segments

• Allows natural whole-segment features, e.g. “are all words in
this span capitalized?”

• Inference for max-length L: LKN
(contrast to L-th order Markov model)

Tuesday, February 28, 17

Inference
• Viterbi: V(i,y) = best prob of path up to i, starting segment y

8

efficient inference algorithm is suggested Equation 2, which implies that

argmax s Pr(s|x,W) = argmax sW · G(x, s) = argmax sW ·
∑

j

g(yj , yj−1,x, tj , uj)

Let L be an upper bound on segment length. Let si:l denote set of all partial segmentation
starting from 1 (the first index of the sequence) to i, such that the last segment has the
label y and ending position i. Let Vx,g,W (i, y) denote the largest value of W · G(x, s′)
for any s′ ∈ si:l. Omitting the subscripts, the following recursive calculation implements a
semi-Markov analog of the usual Viterbi algorithm:

V (i, y) =

{

maxy′,d=1...L V (i − d, y′) + W · g(y, y′,x, i − d, i) if i > 0
0 if i = 0
−∞ if i < 0

(4)

The best segmentation then corresponds to the path traced bymaxy V (|x|, y).

2.3 Semi-Markov CRFs vs order-L CRFs

Since conventional CRFs need not maximize over possible segment lengths d, inference
for semi-CRFs is more expensive. However, Equation 4 shows that the additional cost is
only linear in L. For NER, a reasonable value of L might be four or five.1 Since in the
worst case L ≤ |x|, the algorithm is always polynomial, even when L is unbounded.
For fixed L, it can be shown that semi-CRFs are no more expressive than order-L CRFs.
For order-L CRFs, however the additional computational cost is exponential in L. The
difference is that semi-CRFs only consider sequences in which the same label is assigned
to all L positions, rather than all |Y|bL length-L sequences. This is a useful restriction, as
it leads to faster inference.
Semi-CRFs are also a natural restriction, as it is often convenient to express features in
terms of segments. As an example, let dj denote the length of a segment, and let µ
be the average length of all segments with label I . Now consider the segment feature
gk1(j,x, s) = (dj − µ)2 · [[yj = I]]. After training, the contribution of this feature toward
Pr(s|x) associated with a length-d entity will be proportional to ewk·(d−µ)2—i.e., it allows
the learner to model a Gaussian distribution of entity lengths.
In contrast, the feature gk2(j,x,y) = dj · [[yj = I]] would model an exponential dis-
tribution of lengths. It turns out that gk2 is equivalent to the local feature function
f(i,x,y) = [[yi = I]], in the following sense: for every triple x,y, s, where y are the
tags for s,

∑

j gk2(j,x, s) =
∑

i f(i, s,y). Thus any semi-CRF model based on the single
feature gk2 could also be represented by a conventional CRF.
In general, a semi-CRF model can be factorized in terms of an equivalent order-1 CRF
model iff the sum of the segment features can be rewritten as a sum of local features. Thus
the degree to which semi-CRFs are non-Markovian depends on the feature set.

2.4 Learning algorithm

During training the goal is to maximize log-likelihood over a given training set T =
{(xℓ, sℓ)}N

ℓ=1. Following the notation of Sha and Pereira [16], we express the log-
likelihood over the training sequences as

L(W) =
∑

ℓ

log Pr(sℓ|xℓ,W) =
∑

ℓ

(W ·G(xℓ, sℓ) − log ZW(xℓ)) (5)

1Assuming that non-entity words are placed in unit-length segments, as we do below.

• Forward: a(i,y) = sum of path probs up to i, where i is starting a
segment y

We wish to find aW that maximizes L(W). Equation 5 is convex, and can thus be maxi-
mized by gradient ascent, or one of many related methods. (In our implementation we use
a limited-memory quasi-Newton method [13, 14].) The gradient of L(W) is the following:

∇L(W) =
∑

ℓ

G(xℓ, sℓ) −

∑

s′ G(s′,xℓ)eW·G(xℓ,s′)

ZW(xℓ)
(6)

=
∑

ℓ

G(xℓ, sℓ) − EPr(s′|W)G(xℓ, s
′) (7)

The first set of terms are easy to compute. However, we must use the Markov property of
G and a dynamic programming step to compute the normalizer,ZW(xℓ), and the expected
value of the features under the current weight vector, EPr(s′|W)G(xℓ, s

′). We thus define
α(i, y) as the value of

∑

s′∈si:y
eW·G(s′,x) where again si:y denotes all segmentations from

1 to i ending at i and labeled y. For i > 0, this can be expressed recursively as

α(i, y) =
L

∑

d=1

∑

y′∈Y

α(i − d, y′)eW·g(y,y′,x,i−d,i)

with the base cases defined as α(0, y) = 1 and α(i, y) = 0 for i < 0. The value of ZW(x)
can then be written as ZW(x) =

∑

y α(|x|, y).

A similar approach can be used to compute the expectation
∑

s′ G(xℓ, s
′)eW·G(xℓ,s′).

For the k-th component of G, let ηk(i, y) be the value of the sum
∑

s′∈si:y
Gk(s′,xℓ)eW·G(xℓ,s′), restricted to the part of the segmentation ending at

position i. The following recursion2 can then be used to compute ηk(i, y):

ηk(i, y) =
L

∑

d=1

∑

y′∈Y

(ηk(i − d, y′) + α(i − d, y′)gk(y, y′,x, i − d, i))eW·g(y,y′,x,i−d,i)

Finally we let EPr(s′|W)G
k(s′,x) = 1

ZW(x)

∑

y ηk(|x|, y).

3 Experiments with NER data

3.1 Baseline algorithms and datasets

In our experiments, we trained semi-CRFs to mark entity segments with the label I , and
put non-entity words into unit-length segments with label O. We compared this with two
versions of CRFs. The first version, which we call CRF/1, labels words inside and outside
entities with I and O, respectively. The second version, called CRF/4, replaces the I tag
with four tags B, E, C, and U , which depend on where the word appears in an entity [2].

We compared the algorithms on five NER problems, associated with three different corpora.
The Address corpus contains 4,226 words, and consists of 395 home addresses of students
in a major university in India [1]. We considered extraction of city names and state names
from this corpus. The Jobs corpus contains 73,330 words, and consists of 300 computer-
related job postings [4]. We considered extraction of company names and job titles. The
18,121-word Email corpus contains 216 email messages taken from the CSPACE email
corpus [10], which is mail associated with a 14-week, 277-personmanagement game. Here
we considered extraction of person names.

2As in the forward-backward algorithm for chain CRFs [16], space requirements here can be
reduced fromML|Y| toM |Y|, where M is the length of the sequence, by pre-computing an appro-
priate set of β values.

Tuesday, February 28, 17

Alternate training
• Standard CRF training: NLL loss

9

� log p(y | x) = �✓

T
f(x, y) + log

X

y0

exp

�
✓

T
f(x, y

0
)

�

@

@✓

(� log p(y | x)) = �f(x, y) + E

y

0⇠p✓(y|x)[f(x, y
0
)]

Tuesday, February 28, 17

Alternate training
• Standard CRF training: NLL loss

9

� log p(y | x) = �✓

T
f(x, y) + log

X

y0

exp

�
✓

T
f(x, y

0
)

�

Lperc(y) = �✓

T
f(x, y) + max

y0
✓

T
f(x, y

0
)

• Structured perceptron loss

• => gradient:

@

@✓

(� log p(y | x)) = �f(x, y) + E

y

0⇠p✓(y|x)[f(x, y
0
)]

Tuesday, February 28, 17

Alternate training
• Standard CRF training: NLL loss

9

� log p(y | x) = �✓

T
f(x, y) + log

X

y0

exp

�
✓

T
f(x, y

0
)

�

Lperc(y) = �✓

T
f(x, y) + max

y0
✓

T
f(x, y

0
)

• Structured perceptron loss

• => gradient:
@

@✓

Lperc(y) = �f(x, y) + f(x, y⇤)
argmax

y0
✓

T
f(x, y)

@

@✓

(� log p(y | x)) = �f(x, y) + E

y

0⇠p✓(y|x)[f(x, y
0
)]

Tuesday, February 28, 17

Alternate training
• Standard CRF training: NLL loss

9

� log p(y | x) = �✓

T
f(x, y) + log

X

y0

exp

�
✓

T
f(x, y

0
)

�

Lperc(y) = �✓

T
f(x, y) + max

y0
✓

T
f(x, y

0
)

• Structured perceptron loss

• => gradient:

• SGD => the structured perceptron algorithm [Collins 2002]

• Advantage: only need a Viterbi algorithm

• Better variant: Cost-augmented perceptron (structured
hinge/SVM loss)

@

@✓

Lperc(y) = �f(x, y) + f(x, y⇤)
argmax

y0
✓

T
f(x, y)

@

@✓

(� log p(y | x)) = �f(x, y) + E

y

0⇠p✓(y|x)[f(x, y
0
)]

Tuesday, February 28, 17

