Sequence Labeling & more! (III)

CS 690N, Spring 2017

Advanced Natural Language Processing http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

Random project idea

- Temporal relations
- Goal: extract events from text and have on timeline -- or at least a partial order
- e.g. the TimeBank-Dense dataset
 - "Before <u>1993</u>, she <u>attended</u>..."
 - => BEFORE(attend, 1993-01-01)
 - "I got in a car and <u>drove</u>"
 - => BEFORE(car, drove)
- Aspectual/subordinate/factive relations
 - Hold between events
 - "I doubt I left them there"

Temporal Relations

- BEFORE, AFTER, DURING
 - R(evt, time)
 - R(evt, evt)
- Logical implications: e.g. transitivity

Relation	Illustration	Interpretation
$\begin{array}{c} X < Y \\ Y > X \end{array} -$	<u>Х</u> Y	X takes place before Y
$\frac{X \mathbf{m} Y}{Y \mathbf{m} \mathbf{i} X}$ –	<u>Х</u> Y	X meets Y (i stands for inverse)
X o Y Y oi X -	X Y	X overlaps with Y
$\begin{array}{c} X \mathbf{s} Y \\ Y \mathbf{s} \mathbf{i} X \end{array}$	<u>Х</u> Ү	X starts Y
X d Y Y di X	<u> </u>	X during Y
XfY YfiX _	$\frac{X}{Y}$	X finishes Y
X = Y —	X Y	- X is equal to Y

[Allen's interval algebra]

Forward-Backward

- Purpose: compute
 - Tag marginals $p(y_t | w)$
 - Pair marginals $p(y_{t-1}, y_t | w)$
- Why?
 - Min Bayes Risk decoding
 - For each t, choose: $argmax_k p(y_t=k | w)$
 - E-step for EM learning of unsupervised HMM
 - Feature expectations for supervised CRF

Generalized CRF

$$\psi_c(y_c) = \theta^{\mathsf{T}} f_c(y_c, x)$$
$$p(y \mid x) \propto \exp\left(\sum_c \psi_c(y_c)\right)$$

- Clique c: set of random variables
- ψ_c : soft constraint (logprob) among y_c
- Linear chain CRF: neighboring cliques only
- Many others possible!
 - Higher order Markov
 - Global document information
 - e.g. repeated words tend to have same label: one-sense-per-discourse or coreference

Learning a CRF $\log p_{\theta}(y \mid w) = \theta^{\mathsf{T}} f(y, w) - \log \sum_{y'} \exp(\theta^{\mathsf{T}} f(y, w))$ $\frac{\partial \log p_{\theta}(...)}{\partial \theta_{j}} = f_{j}(y, w) - \sum_{y'} p_{\theta}(y' \mid w) f_{j}(y', w)$

• Apply local decomposition

Learning a CRF $\log p_{\theta}(y \mid w) = \theta^{\mathsf{T}} f(y, w) - \log \sum_{y'} \exp(\theta^{\mathsf{T}} f(y, w))$ $\frac{\partial \log p_{\theta}(...)}{\partial \theta_{j}} = f_{j}(y, w) - \sum_{y'} p_{\theta}(y' \mid w) f_{j}(y', w)$ • Apply local decomposition

$$= \left(\sum_{t} f_j(y_{t-1}, y_t, w_t)\right) - \sum_{y'} p_\theta(y' \mid w) \sum_{t} f_j(y'_{t-1}, y'_t, w_t)$$

Learning a CRF

$$\log p_{\theta}(y \mid w) = \theta^{\mathsf{T}} f(y, w) - \log \sum_{y'} \exp(\theta^{\mathsf{T}} f(y, w))$$

$$\frac{\partial \log p_{\theta}(...)}{\partial \theta_{j}} = f_{j}(y, w) - \sum_{y'} p_{\theta}(y' \mid w) f_{j}(y', w)$$
• Apply local decomposition

$$= \left(\sum_{t} f_{j}(y_{t-1}, y_{t}, w_{t})\right) - \sum_{y'} p_{\theta}(y' \mid w) \sum_{t} f_{j}(y'_{t-1}, y'_{t}, w_{t})$$

$$=\sum_{t}\left(f_{j}(y_{t-1}, y_{t}, w_{t}) - \sum_{y'_{t}, y'_{t-1}} p_{\theta}(y'_{t-1}, y'_{t} \mid w)f_{j}(y'_{t-1}, y'_{t}, w_{t})\right)$$

Learning a CRF

$$\log p_{\theta}(y \mid w) = \theta^{\mathsf{T}} f(y, w) - \log \sum_{y'} \exp(\theta^{\mathsf{T}} f(y, w))$$

$$\frac{\partial \log p_{\theta}(...)}{\partial \theta_{j}} = f_{j}(y, w) - \sum_{y'} p_{\theta}(y' \mid w) f_{j}(y', w)$$
• Apply local decomposition

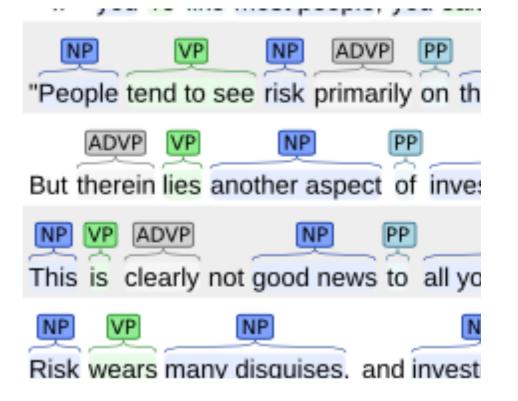
$$= \left(\sum_{t} f_{j}(y_{t-1}, y_{t}, w_{t})\right) - \sum_{y'} p_{\theta}(y' \mid w) \sum_{t} f_{j}(y'_{t-1}, y'_{t}, w_{t})$$
Real feature value

$$= \sum_{t} \left(f_{j}(y_{t-1}, y_{t}, w_{t}) - \sum_{y'_{t}, y'_{t-1}} p_{\theta}(y'_{t-1}, y'_{t} \mid w) f_{j}(y'_{t-1}, y'_{t}, w_{t}) \right)$$
The weight (in the method and)

Tag marginals (to compute: forward-backward)

Semi-Markov CRF

- [Sarawagi and Cohen, 2004]
- Instead of sequence labels, assume variable length segments
 - s_j = (start, end, label)
 - All positions covered by nonoverlapping segments



- Allows natural whole-segment features, e.g. "are all words in this span capitalized?"
- Inference for max-length L: LKN (contrast to L-th order Markov model)

Inference

• Viterbi: V(i,y) = best prob of path up to *i*, starting segment y

$$V(i, y) = \begin{cases} \max_{y', d=1...L} V(i - d, y') + \mathbf{W} \cdot \mathbf{g}(y, y', \mathbf{x}, i - d, i) & \text{if } i > 0\\ 0 & \text{if } i = 0\\ -\infty & \text{if } i < 0 \end{cases}$$

Forward: a(i,y) = sum of path probs up to i, where i is starting a segment y

$$\alpha(i, y) = \sum_{d=1}^{L} \sum_{y' \in \mathcal{Y}} \alpha(i - d, y') e^{\mathbf{W} \cdot \mathbf{g}(y, y', \mathbf{x}, i - d, i)}$$

• Standard CRF training: NLL loss

 $-\log p(y \mid x) = -\theta^{\mathsf{T}} f(x, y) + \log \sum_{y' \in \mathcal{P}} \exp \left(\theta^{\mathsf{T}} f(x, y')\right)$ $\frac{\partial}{\partial \theta} (-\log p(y \mid x)) = -f(x, y) + E_{y' \sim p_{\theta}(y \mid x)}[f(x, y')]$

- Standard CRF training: NLL loss $-\log p(y \mid x) = -\theta^{\mathsf{T}} f(x, y) + \log \sum_{y'} \exp \left(\theta^{\mathsf{T}} f(x, y')\right)$ $\frac{\partial}{\partial \theta} (-\log p(y \mid x)) = -f(x, y) + E_{y' \sim p_{\theta}(y \mid x)} [f(x, y')]$
 - Structured perceptron loss
 L_{perc}(y) = −θ^Tf(x, y) + max θ^Tf(x, y')
 y'
 => gradient:

- Standard CRF training: NLL loss $-\log p(y \mid x) = -\theta^{\mathsf{T}} f(x, y) + \log \sum_{y'} \exp \left(\theta^{\mathsf{T}} f(x, y')\right)$ $\frac{\partial}{\partial \theta} (-\log p(y \mid x)) = -f(x, y) + E_{y' \sim p_{\theta}(y \mid x)} [f(x, y')]$
 - Structured perceptron loss $L_{perc}(y) = -\theta^{\mathsf{T}} f(x, y) + \max_{y'} \theta^{\mathsf{T}} f(x, y')$ • => gradient: $\frac{\partial}{\partial \theta} L_{perc}(y) = -f(x, y) + f(x, y^*)$ arg max $\theta^{\mathsf{T}} f(x, y)$

- Standard CRF training: NLL loss $-\log p(y \mid x) = -\theta^{\mathsf{T}} f(x, y) + \log \sum_{y'} \exp \left(\theta^{\mathsf{T}} f(x, y')\right)$ $\frac{\partial}{\partial \theta} (-\log p(y \mid x)) = -f(x, y) + E_{y' \sim p_{\theta}}(y \mid x) [f(x, y')]$
 - Structured perceptron loss $L_{perc}(y) = -\theta^{\mathsf{T}} f(x, y) + \max_{y'} \theta^{\mathsf{T}} f(x, y')$ • => gradient: $\frac{\partial}{\partial \theta} L_{perc}(y) = -f(x, y) + f(x, y^*)$ arg max $\theta^{\mathsf{T}} f(x, y)$
 - SGD => the structured perceptron algorithm [Collins 2002]
 - Advantage: only need a Viterbi algorithm
 - Better variant: Cost-augmented perceptron (structured hinge/SVM loss)