Sequence Labeling

CS 690N, Spring 2017

Advanced Natural Language Processing http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

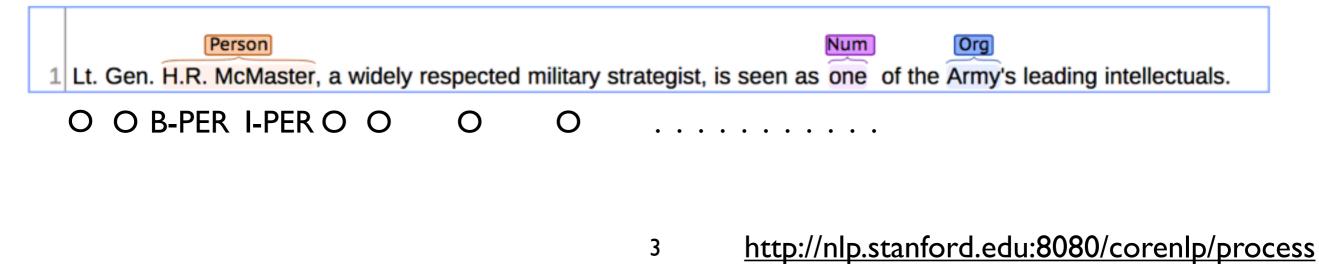
- Sequence labeling problems
 - Part of speech tags
- Models: HMMs, CRFs

- Sequence labeling: from $x_1..x_n$, predict tags $y_1..y_n$
- Named entity recognition: an example of span recognition
 - BIO tags allow treatment as a sequence labeling problem

Part-of-Speech:

NNP NNP NNP DT RB JJ JJ NI 1 Lt. Gen. H.R. McMaster, a widely respected military strate	
intellectuals.	

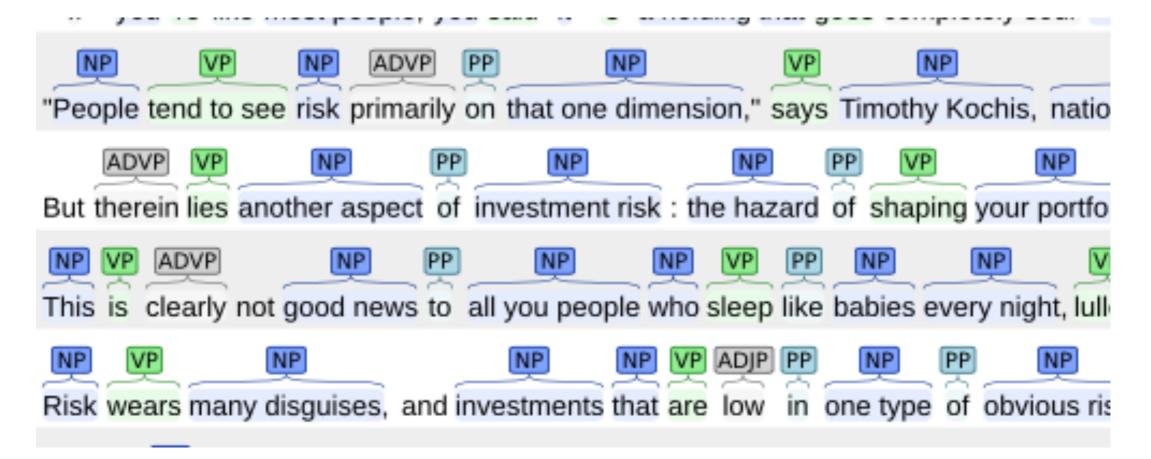
Named Entity Recognition:



3

More span labeling tasks

• Syntactic chunking



Biological entities

spc cell type

anat

Characterization of undifferentiated human ES cells and differentiated EBs by antibodiesAll monoclonal initially selected for their abilities to recognize recombinant proteins in direct ELISAs.

A subset were also tested by Western Blot analysis using recombinant proteins and cell lysate to content epitope.

The best clone was later screened for its applications for immunocytochemistry and flow cytometry us

spc	anator	ny	component			spc	spc g	ene
Human	peripheral	blood	platelets	were use	d for screer	ning mous	e anti-human (CD9 antibody.
c line				spc	spc	gene	gene	gene or protein
MCF-7	cells were	used f	or screenin	g mouse	anti-human	E-Cadher	in and PODXL	(podocalyxin-like) ar
cline				spc	spc	gene	gene or prot	ein
MG-63	cells were	used f	or screenin	g mouse	anti-human	GATA1 (C	GATA binding p	rotein 1) antibody.

What's a part-of-speech (POS)?

- Syntax = how words compose to form larger meaningbearing units
- POS = syntactic categories for words
 - You could substitute words within a class and have a syntactically valid sentence.
 - Give information how words can combine.
 - I saw the <u>dog</u>
 - I saw the <u>cat</u>
 - I saw the {table, sky, dream, school, anger, ...}
- (Phrasal/constituent categories generalize this idea. POS tags are constrained to single words.)

Open vs closed classes

Open class ((lexical) words	6			
Nouns		Verbs	Adjectives	old older	oldest
Proper	Common	Main	Adverbs	slowly	
IBM	cat / cats	see			
Italy	snow	registered	Numbers	r i	nore
			122,312		
Closed class	(functional)	-	one		
		Modals			
Determiner	'S the some	can	Preposition	s to with	
Conjunctio	ns and or	had	Particles	off up	more
Pronouns	he its		Interjection	s Ow Eh	

slide credit: Chris Manning

ikr	smh	he	asked	fir	yo	last
name	SO	he	can	add	u	on
fb	lololol					
fb	lololol					

ikr	smh	he	asked	fir	yo	last
!	G	O	V	P	D	A
name N fb ^	so P lololol !	he O	can V	add V	u O	on P

Why do we want POS?

- Useful for many syntactic and other NLP tasks.
 - Phrase identification ("chunking")
 - Named entity recognition
 - Full parsing
 - Sentiment
- Especially when there's a low amount of training data

POS patterns: sentiment

• Turney (2002): identify bigram phrases, from unlabeled corpus, useful for sentiment analysis.

	le 1. Patterns of ses from reviev	f tags for extracti ws.	ng two-word	
	First Word	Second Word	Third Word	
			(Not Extracted)	
1.	JJ	NN or NNS	anything	
2.	RB, RBR, or RBS	JJ	not NN nor NNS	
3.	JJ	JJ	not NN nor NNS	
4.	NN or NNS	JJ	not NN nor NNS	
5.	RB, RBR, or	VB, VBD,	anything	
	RBS	VBN, or VBG		

(plus sentiment PMI stuff)

POS patterns: sentiment

• Turney (2002): identify bigram phrases, from unlabeled corpus, useful for sentiment analysis.

	le 1. Patterns o ases from revie	f tags for extracti ws.	ng two-word	Extracted Phrase	Part-of-Speech Tags	Semantic Orientatior
1. 2. 3. 4. 5.	First Word JJ RB, RBR, or RBS JJ NN or NNS RB, RBR, or RBS]] J]	Third Word (Not Extracted) anything not NN nor NNS not NN nor NNS not NN nor NNS anything	 online experience low fees local branch small part online service printable version direct deposit well other inconveniently located 	JJ NN JJ NNS JJ NN JJ NN JJ NN JJ NN JJ NN RB JJ RB VBN	2.253 0.333 0.421 0.053 2.780 -0.705 1.288 0.237 -1.541
				other bank true service	JJ NN JJ NN	-0.850 -0.732

11

POS patterns: simple noun phrases

Quick and dirty noun phrase identification
 <u>http://brenocon.com/JustesonKatz1995.pdf</u>
 <u>http://brenocon.com/handler2016phrases.pdf</u>

Grammatical structure: Candidate strings are those multi-word noun phrases that are specified by the regular expression $((A | N)^+ | ((A | N)^*(NP)^?)(A | N)^*)N$,

Tag Pattern	Example
AN	linear function
NN	regression coefficients
AAN	Gaussian random variable
ANN	cumulative distribution function
NAN	mean squared error
NNN	class probability function
NPN	degrees of freedom

Table 5.2 Part of speech tag patterns for collocation filtering. These patterns were used by Justeson and Katz to identify likely collocations among frequently occurring word sequences.

POS Tagging: lexical ambiguity

Can we just use a tag dictionary (one tag per word type)?

Types:	WSJ	Brown
Unambiguous (1 tag)	44,432 (86%)	45,799 (85%)
Ambiguous (2+ tags)	7,025 (14%)	8,050 (15%)

Most words types are unambiguous ...

- Ambiguous wordtypes tend to be very common ones.
 - I know **that** he is honest = IN (relativizer)
 - Yes, **that** play was nice = DT (determiner)
 - You can't go **that** far = RB (adverb)

POS Tagging: lexical ambiguity

Can we just use a tag dictionary (one tag per word type)?

Types: Unambiguous Ambiguous	(1 tag) (2+ tags)	WSJ 44,432 (7,025 ((86%)	Brov 45,799 8,050	Most words types are unambiguous
Tokens: Unambiguous Ambiguous	(1 tag) (2+ tags)	577,421 (711,780 (But not so for tokens!

- Ambiguous wordtypes tend to be very common ones.
 - I know **that** he is honest = IN (relativizer)
 - Yes, **that** play was nice = DT (determiner)
 - You can't go **that** far = RB (adverb)

Need careful guidelines (and do annotators always follow them?) PTB POS guidelines, Santorini (1990)

4 Confusing parts of speech

This section discusses parts of speech that are easily confused and gives guidelines on how to tag such cases.

CD or JJ

Number-number combinations should be tagged as adjectives (JJ) if they have the same distribution as adjectives.

EXAMPLES: a 50-3/JJ victory (cf. a handy/JJ victory)

Hyphenated fractions one-half, three-fourths, seven-eighths, one-and-a-half, seven-and-three-eighths should be tagged as adjectives (JJ) when they are prenominal modifiers, but as adverbs (RB) if they could be replaced by *double* or *twice*.

EXAMPLES: one-half/JJ cup; cf. a full/JJ cup one-half/RB the amount; cf. twice/RB the amount; double/RB the amount

Some other lexical ambiguities

- Prepositions (P) versus verb particles (T)
 - turn into/P a monster
 - take out/T the trash
 - check it out/T, what's going on/T, shout out/T

<u>Test:</u> turn slowly into a monster *take slowly out the trash

Careful annotator guidelines are necessary to define what to do in many cases.

•<u>http://repository.upenn.edu/cgi/viewcontent.cgi?article=1603&context=cis_reports</u>

•<u>http://www.ark.cs.cmu.edu/TweetNLP/annot_guidelines.pdf</u>

Some other lexical ambiguities

- Prepositions (P) versus verb particles (T)
 - turn into/P a monster
 - take out/T the trash
 - check it out/T, what's going on/T, shout out/T
- this, that -- pronouns versus determiners
 - i just orgasmed over this/O
 - this/D wind is serious

Careful annotator guidelines are necessary to define what to do in many cases.

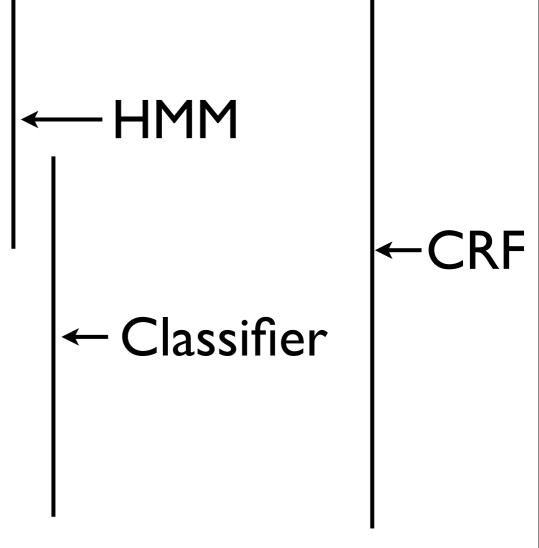
•<u>http://repository.upenn.edu/cgi/viewcontent.cgi?article=1603&context=cis_reports</u>

•<u>http://www.ark.cs.cmu.edu/TweetNLP/annot_guidelines.pdf</u>

<u>Test:</u> turn slowly into a monster *take slowly out the trash

How to build a POS tagger?

- Sources of information:
 - POS tags of surrounding words: syntactic context
 - The word itself
 - Features!
 - Word-internal information
 - External lexicons
 - Features from surrounding words



Sequence labeling

- Seq. labeling as classification
 - Each position *m* gets an independent classification

 $p(y_m \mid w_1..w_n)$ arg max $\theta^{\mathsf{T}} \mathbf{f}((\mathbf{w}, m), y)$ $f((\mathbf{w} = they \ can \ fish, m = 1), \mathbf{N}) = \langle they, \mathbf{N} \rangle$ $f((\mathbf{w} = they \ can \ fish, m = 2), \mathbf{V}) = \langle can, \mathbf{V} \rangle$ $f((\mathbf{w} = they \ can \ fish, m = 3), \mathbf{V}) = \langle fish, \mathbf{V} \rangle.$

Sequence labeling

- Seq. labeling as classification
 - Each position *m* gets an independent classification

 $p(y_m \mid w_1..w_n)$ arg max $\theta^{\mathsf{T}} \mathbf{f}((\mathbf{w}, m), y)$ $f((\mathbf{w} = they \ can \ fish, m = 1), \mathbf{N}) = \langle they, \mathbf{N} \rangle$ $f((\mathbf{w} = they \ can \ fish, m = 2), \mathbf{V}) = \langle can, \mathbf{V} \rangle$ $f((\mathbf{w} = they \ can \ fish, m = 3), \mathbf{V}) = \langle fish, \mathbf{V} \rangle.$

- But syntactic (tag) context is sometimes necessary!
 - The old man the boat [garden path sentence]

• Seq. labeling as structured prediction $\hat{y}_{1:M} = \underset{y_{1:M} \in \mathcal{Y}(w_{1:M})}{\operatorname{argmax}} \theta^{\top} f(w_{1:M}, y_{1:M}),$

Hidden Markov model

- Fully generative, simple sequence model
- Supports many operations
 - P(w): Likelihood (generative model)
 - Forward algorithm
 - P(y | w): Predicted sequence ("decoding")
 - Viterbi algorithm
 - P(y_m | w): Predicted tag marginals
 - Forward-Backward algorithm
- The HMM is a type of log-linear model

18

Forward algorithm

- on board
- stopped here 2/21

Viterbi algorithm

 If the feature function decomposes into local features, dynamic programming gives global solution

$$\hat{\boldsymbol{y}} = \operatorname*{argmax}_{\boldsymbol{y}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{y}) \qquad \qquad \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{y}) = \sum_{m=1}^{M} \boldsymbol{f}(\boldsymbol{w}, y_m, y_{m-1}, m).$$

• Decompose: $\max_{\boldsymbol{y}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{y}) = \max_{\boldsymbol{y}_{1:M}} \sum_{m=1}^{M} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, y_m, y_{m-1}, m)$

• Define Viterbi variables: $(1) \land \cdots \land T \land (1) ($

$$v_m(k) \triangleq \max_{\boldsymbol{y}_{1:m-1}} \boldsymbol{\theta}^\top \boldsymbol{f}(\boldsymbol{w}, k, y_{m-1}, m) + \sum_{n=1}^{m-1} \boldsymbol{\theta}^\top \boldsymbol{f}(\boldsymbol{w}, y_n, y_{n-1}, n)$$

Viterbi algorithm

 If the feature function decomposes into local features, dynamic programming gives global solution

$$\hat{\boldsymbol{y}} = \operatorname*{argmax}_{\boldsymbol{y}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{y}) \qquad \qquad \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{y}) = \sum_{m=1}^{M} \boldsymbol{f}(\boldsymbol{w}, y_m, y_{m-1}, m).$$

• Decompose:

$$\max_{\boldsymbol{y}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{y}) = \max_{\boldsymbol{y}_{1:M}} \sum_{m=1}^{M} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, y_m, y_{m-1}, m)$$
$$= \max_{\boldsymbol{y}_{1:M}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, y_M, y_{M-1}, M) + \sum_{m=1}^{M-1} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, y_m, y_{m-1}, m)$$

• Define Viterbi variables:

$$v_m(k) \triangleq \max_{\boldsymbol{y}_{1:m-1}} \boldsymbol{\theta}^\top \boldsymbol{f}(\boldsymbol{w}, k, y_{m-1}, m) + \sum_{n=1}^{m-1} \boldsymbol{\theta}^\top \boldsymbol{f}(\boldsymbol{w}, y_n, y_{n-1}, n)$$

Viterbi algorithm

 If the feature function decomposes into local features, dynamic programming gives global solution

$$\hat{\boldsymbol{y}} = \operatorname*{argmax}_{\boldsymbol{y}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{y}) \qquad \qquad \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{y}) = \sum_{m=1}^{M} \boldsymbol{f}(\boldsymbol{w}, y_m, y_{m-1}, m).$$

• Decompose:

$$\max_{\boldsymbol{y}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{y}) = \max_{\boldsymbol{y}_{1:M}} \sum_{m=1}^{M} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, y_m, y_{m-1}, m)$$

$$= \max_{\boldsymbol{y}_{1:M}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, y_M, y_{M-1}, M) + \sum_{m=1}^{M-1} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, y_m, y_{m-1}, m)$$

$$= \max_{\boldsymbol{y}_M} \max_{\boldsymbol{y}_{M-1}} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, y_M, y_{M-1}, M) + \max_{\boldsymbol{y}_{1:M-2}} \sum_{m=1}^{M-1} \boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{w}, y_m, y_{m-1}, m).$$

• Define Viterbi variables:

$$v_m(k) \triangleq \max_{\boldsymbol{y}_{1:m-1}} \boldsymbol{\theta}^\top \boldsymbol{f}(\boldsymbol{w}, k, y_{m-1}, m) + \sum_{n=1}^{m-1} \boldsymbol{\theta}^\top \boldsymbol{f}(\boldsymbol{w}, y_n, y_{n-1}, n)$$