Neural network language models

Lecture, Feb 16
CS 690N, Spring 2017

Advanced Natural Language Processing
http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Thursday, February 16, 17

http://people.cs.umass.edu/~brenocon/anlp2017/
http://people.cs.umass.edu/~brenocon/anlp2017/

Neural Language Models

Feed forward network

~
\—/

Wh + b

=
|

y
*
h = g(Vx+c) (. h)
*
X

~
\—/

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Nonlinear activation functions

2.0 T T T T T | 1 |

// ex
i /, | sigmoid(x) = [or
1.0 N |
o tanh(x) = 2 x sgm(xz) — 1
OO0 = = = = = = = = -\\\-*‘,\ — sigmoid |7 (QU)_|_ — maX(O, CE)
osl e tanh || a.k.a.“ReLU”
- = RelU

ETETAT AL | | | | | |
-20 -15 -1.0 -05 00 O5 10 15 2.0

Thursday, February 16, 17

Trigram NN language model

Word embeddings

l

h, = g(V[Wn—l; Wn—2] =+ C)
pn = softmax(Wh, + b)
exp U; .
softmax(u); =
() Zj exp U; (p*n)

C lhn\)
e w; are one hot vetors and p; are
distributions, (wn—Q)(wn—l)
o |w;| = |pi| = V (words in the
vocabulary),

e V is usually very large > 1eb.

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

(2] el =<l o o
=|glc 2lwlolol o
IBNIIOQU>

op

Wph|Wn—1, Wp—2 ~~

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

>

Wh|Wn—1, Wp—2 n

I »

2|5|5| 8l 8
HH LT

= =
/ s

(w-1) (Cwo)

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

fop

Wn‘Wn—la Wp—2 n

g <l o ol o)l < .
g HEHEEEERD 223

| P2

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

!
T M A
hl C C hs)
2 X T % T
1) Cwo) Cwo) Cwi) Cw) Cwa)

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

< A
g AEHEEEERS SHEFRERREERRRRE
2 =1 518|8| %] =|2]| 2| EH E

g o sl [1L A
E 22 K

C

HIH HHEEHEEEEE

AE
H EEEEEREERER
17

I p3

!
4
4

C

hs3

),

7%
Cw) (w2)

¥

. i A

C ha)
7w
(w2) ws)

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

The usual training objective is

the cross entropy of the data
given the model (MLE):

1 . (Cwn)
F = —NZCOStn(Wnapn) v
n (costn)
*
The cost function is simply the (D,)
model’s estimated log-probability o

of wy: (h)

7~
cost(a, b) = a' log b (wn—Q)(wn—l)

(assuming w; is a one hot
encoding of the word)

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

Calculating the gradients is (Wn,)
straightforward with back v
propagation: (Coft’”)
b
a_"r __ 1 Z dcost, 0Pn (Pn)
oW " 9pn X
a_‘F 1 Z Ocost, OPpn Oh, (hn)

(Wn—2)(Wn-1)

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

Calculating the gradients is straightforward with back propagation:
oOF 1 < dcost,, 0P, OF 1 < Jdcost, 0p, Oh,

oW~ 4 op, OW ° OV 4 9p, Oh, OV

n=1 n=1

C_) C) C_h) (C_ k)
27 RN\ 2 RN 27 RN 27 RN\
(w_1)(Cwo) Cwo (w1) (w1 (w2) (w2 H)(ws)

Note that calculating the gradients for each time step n is independent of
all other timesteps, as such they are calculated in parallel and summed.

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Comparison with Count Based N-Gram LMs

Good

e Better generalisation on unseen n-grams, poorer on seen n-grams.
Solution: direct (linear) ngram features.

e Simple NLMs are often an order magnitude smaller in memory
footprint than their vanilla n-gram cousins (though not if you use
the linear features suggested above!).

Bad

e The number of parameters in the model scales with the n-gram size
and thus the length of the history captured.

e The n-gram history is finite and thus there is a limit on the longest
dependencies that an be captured.

e Mostly trained with Maximum Likelihood based objectives which do
not encode the expected frequencies of words a priori.

[Slide: Phil Blunsom]

Thursday, February 16, 17

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Training NNs

® Dropout (preferred regularization method)
® Minibatching
® Parallelization (GPUs)

® | ocal optima?

Thursday, February 16, 17

Word/feature embeddings

® “lookup layer”: from discrete input features (words,
ngrams, etc.) to continuous vectors

® Anything that was directly used in log-linear models, move to
using vectors

® |earn or not!
® |earn:theyre just model parameters
® Fixed: use pretrained embeddings

® Use a faster-to-train model on very large, perhaps different, dataset
[e.g. word2vec, glove pretrained word vectors]

® Both:initialize with pretrained, then learn
® Word at test but not training time?

® Shared representations for
domain adaptation and multitask learning

Thursday, February 16, 17

Local models Long-history models
W | We—2, W1 Wy | Wi, ... Wi

Fully observed
direct word models

Latent-class
direct word models

Markovian neural LM Recurrent neural LM

Thursday, February 16, 17

