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Neural Language Models

Feed forward network
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Nonlinear activation functions
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Trigram NN language model

Word embeddings

l

h, = g(V[Wn—l; Wn—2] =+ C)
pn = softmax(Wh, + b)
exp U; .
softmax(u); =
( ) Zj exp U; ( p*n )

C lhn\ )
e w; are one hot vetors and p; are
distributions, (wn—Q)(wn—l)
o |w;| = |pi| = V (words in the
vocabulary),

e V is usually very large > 1eb.
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Training

The usual training objective is

the cross entropy of the data
given the model (MLE):

1 . (Cwn )
F = —NZCOStn(Wnapn) v
n (costn)
*
The cost function is simply the ( D, )
model’s estimated log-probability o

of wy: ( h )

7~
cost(a, b) = a' log b (wn—Q)(wn—l)

(assuming w; is a one hot
encoding of the word)
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Neural Language Models: Training

Calculating the gradients is ( Wn, )
straightforward with back v
propagation: (Coft’”)
b
a_"r __ 1 Z dcost, 0Pn ( Pn )
oW " 9pn X
a_‘F 1 Z Ocost, OPpn Oh, ( hn )

(Wn—2)(Wn-1)

[Slide: Phil Blunsom]

Thursday, February 16, 17


https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

Calculating the gradients is straightforward with back propagation:
oOF 1 < dcost,, 0P, OF 1 < Jdcost, 0p, Oh,

oW~ 4 op, OW ° OV 4 9p, Oh, OV

n=1 n=1

C_ ) C ) C_h ) (C_ k)
27 RN\ 2 RN 27 RN 27 RN\
(w_1)(Cwo ) Cwo (w1 ) (w1 (w2 ) (w2 H)(ws )

Note that calculating the gradients for each time step n is independent of
all other timesteps, as such they are calculated in parallel and summed.
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Comparison with Count Based N-Gram LMs

Good

e Better generalisation on unseen n-grams, poorer on seen n-grams.
Solution: direct (linear) ngram features.

e Simple NLMs are often an order magnitude smaller in memory
footprint than their vanilla n-gram cousins (though not if you use
the linear features suggested above!).

Bad

e The number of parameters in the model scales with the n-gram size
and thus the length of the history captured.

e The n-gram history is finite and thus there is a limit on the longest
dependencies that an be captured.

e Mostly trained with Maximum Likelihood based objectives which do
not encode the expected frequencies of words a priori.
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Training NNs

® Dropout (preferred regularization method)
® Minibatching
® Parallelization (GPUs)

® | ocal optima?
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Word/feature embeddings

® “lookup layer”: from discrete input features (words,
ngrams, etc.) to continuous vectors

® Anything that was directly used in log-linear models, move to
using vectors

® |earn or not!
® |earn:theyre just model parameters
® Fixed: use pretrained embeddings

® Use a faster-to-train model on very large, perhaps different, dataset
[e.g. word2vec, glove pretrained word vectors]

® Both:initialize with pretrained, then learn
® Word at test but not training time?

® Shared representations for
domain adaptation and multitask learning
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Local models Long-history models
W | We—2, W1 Wy | Wi, ... Wi

Fully observed
direct word models

Latent-class
direct word models

Markovian neural LM Recurrent neural LM
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