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Neural Language Models

Feed forward network

h = g(Vx + c)

ŷ = Wh + b
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Nonlinear activation functions
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5.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 91

Figure 5.2: Nonlinear activation functions for neural networks

recurrent neural network (RNN Mikolov et al., 2010). The basic idea is to recurrently
update the context vectors as we move through the sequence. Let us write h

m

for the
contextual information at position m in the sequence. RNNs employ the following recur-
rence:
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where � is a matrix of input word embeddings, and x

m

denotes the embedding for word
w
m

. The function g is an element-wise nonlinear activation function. Typical choices are:

• tanh(x), the hyperbolic tangent;

• �(x), the sigmoid function 1

1+exp(�x)

;

• (x)
+

, the rectified linear unit, (x)
+

= max(x, 0), also called ReLU.

These activation functions are shown in Figure 5.2. The sigmoid and tanh functions
“squash” their inputs into a fixed range: [0, 1] for the sigmoid, [�1, 1] for tanh. This makes
it possible to chain together many iterations of these functions without numerical insta-
bility.

A key point about the RNN language model is that although each w
m

depends only on
the context vector h

m�1

, this vector is in turn influenced by all previous tokens, w
1

, w
2

, . . . w
m�1

,
through the recurrence operation: w

1

affects h

1

, which affects h

2

, and so on, until the in-
formation is propagated all the way to h

m�1

, and then on to w
m

(see Figure 5.1). This
is an important distinction from n-gram language models, where any information out-
side the n-word window is ignored. Thus, in principle, the RNN language model can

(c) Jacob Eisenstein 2014-2017. Work in progress.
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Neural Language Models

Trigram NN language model

hn = g(V [wn�1

;wn�2

] + c)

p̂n = softmax(Whn + b)

softmax(u)i =
exp uiP
j exp uj

• wi are one hot vetors and p̂i are
distributions,

• |wi | = |p̂i | = V (words in the
vocabulary),

• V is usually very large > 1e5.
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Training

The usual training objective is
the cross entropy of the data
given the model (MLE):

F = � 1

N

X

n

costn(wn, p̂n)

The cost function is simply the
model’s estimated log-probability
of wn:

cost(a, b) = aT log b

(assuming wi is a one hot
encoding of the word)
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Neural Language Models: Training

Calculating the gradients is
straightforward with back
propagation:
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Neural Language Models: Training

Calculating the gradients is straightforward with back propagation:
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Note that calculating the gradients for each time step n is independent of
all other timesteps, as such they are calculated in parallel and summed.
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Comparison with Count Based N-Gram LMs

Good

• Better generalisation on unseen n-grams, poorer on seen n-grams.
Solution: direct (linear) ngram features.

• Simple NLMs are often an order magnitude smaller in memory
footprint than their vanilla n-gram cousins (though not if you use
the linear features suggested above!).

Bad

• The number of parameters in the model scales with the n-gram size
and thus the length of the history captured.

• The n-gram history is finite and thus there is a limit on the longest
dependencies that an be captured.

• Mostly trained with Maximum Likelihood based objectives which do
not encode the expected frequencies of words a priori.

[Slide: Phil Blunsom]
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Training NNs

• Dropout (preferred regularization method)

• Minibatching

• Parallelization (GPUs)

• Local optima?

14
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Word/feature embeddings

• “Lookup layer”: from discrete input features (words, 
ngrams, etc.) to continuous vectors

• Anything that was directly used in log-linear models, move to 
using vectors

• Learn or not?

• Learn: they’re just model parameters

• Fixed: use pretrained embeddings

• Use a faster-to-train model on very large, perhaps different, dataset
[e.g. word2vec, glove pretrained word vectors]

• Both: initialize with pretrained, then learn

• Word at test but not training time?

• Shared representations for
domain adaptation and multitask learning

15
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wt | wt�2, wt�1 wt | w1, . . . wt�1

Local models Long-history models

Fully observed
direct word models

. . . . . . Log-linear models . . . . . .

Latent-class
direct word models

Markovian neural LM Recurrent neural LM
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