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• Office hours

• Grading info (webpage)

• Piazza (announcements & discussion)

• HW1
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Today

• EM algorithm to learn latent variable 
probabilistic models

• What’s a probabilistic model?  Learning? 
Inference?

• Examples

• (Unsupervised) Naive Bayes

• Saul&Pereira’s “Aggregate Bigram” Model

• Why does EM work (or not)?

4
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~Multinomial NB
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~Multinomial NB
• Assume K document labels, closed vocabulary V, and 

parameters

• ɸk word distribution for each class k=1..K

• μ distribution over labels
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~Multinomial NB
• Assume K document labels, closed vocabulary V, and 

parameters

• ɸk word distribution for each class k=1..K

• μ distribution over labels

• Generative story

• For each document d:

• Draw its label zd ~ Categ( μ )
• Repeat for t=1,2,...:

• Draw next word wd,t ~ Categ( ɸz )
• If wd,t=END, quit

5

Friday, January 27, 17



~Multinomial NB
• Assume K document labels, closed vocabulary V, and 

parameters

• ɸk word distribution for each class k=1..K

• μ distribution over labels

• Generative story

• For each document d:

• Draw its label zd ~ Categ( μ )
• Repeat for t=1,2,...:

• Draw next word wd,t ~ Categ( ɸz )
• If wd,t=END, quit

• Things to do with this (or any) model

• Write the joint probability P(w,z | μ,ɸ)

• Posterior inference for unknown variables

• Max Likelihood Estimation learning
argmaxμ,ɸ P(w,z | μ,ɸ)

5
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• Posterior inference: use Bayes rule (and/or sum 
rule etc.) to rewrite in terms of parameters and 
variables you know

• Maximum likelihood learning

• Is the log-likelihood concave?

• Does it have an analytical closed-form?

6
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• Supervised classification 
with MNB:

• Training: known (w,z), 
learn params

• Testing: fix params, 
known w, want z

• Unsupervised learning 
(soft clustering)

• known w, jointly learn z 
and params

• Can learn latent 
structure in data

7

1987 NYT data
one point per doc

“congress”, “religious”, “reagan”
probabilities per doc (normalized)
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Expectation-Maximization

8
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Expectation-Maximization
• For latent-variable learning situations

• w: known

• z: unknown “nuisance” variable: need to infer

• θ: want to learn

• Learning goal:  argmaxθ P(w | θ) = argmaxθ Σz P(w,z | θ)

8
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Expectation-Maximization
• For latent-variable learning situations

• w: known

• z: unknown “nuisance” variable: need to infer

• θ: want to learn

• Learning goal:  argmaxθ P(w | θ) = argmaxθ Σz P(w,z | θ)

• ... when parameter learning would be easy if only you had z.

• Why is this the case for our model?
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Expectation-Maximization
• For latent-variable learning situations

• w: known

• z: unknown “nuisance” variable: need to infer

• θ: want to learn

• Learning goal:  argmaxθ P(w | θ) = argmaxθ Σz P(w,z | θ)

• ... when parameter learning would be easy if only you had z.

• Why is this the case for our model?

• EM is a “meta”-algorithm

• Initialize parameters.

• Iterate until convergence (or stop early):

• (E step):  Infer Q(z) := P(z | w, θ)

• (M step):  Learn new θ := argmaxθ EQ[log P(w,z | θ)]
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Expectation-Maximization
• For latent-variable learning situations

• w: known

• z: unknown “nuisance” variable: need to infer

• θ: want to learn

• Learning goal:  argmaxθ P(w | θ) = argmaxθ Σz P(w,z | θ)

• ... when parameter learning would be easy if only you had z.

• Why is this the case for our model?

• EM is a “meta”-algorithm

• Initialize parameters.

• Iterate until convergence (or stop early):

• (E step):  Infer Q(z) := P(z | w, θ)

• (M step):  Learn new θ := argmaxθ EQ[log P(w,z | θ)]

• Turns out to converge and gives a local maximum solution to 
the original marginal likelihood learning goal

8
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EM performance

• Guaranteed to find a locally maximum 
likelihood solution.  Guaranteed to converge.

• But can take a while

• Dependent on initialization 

9

Johnson 2007, “Why doesn’t EM 
find good HMM POS-taggers?”

H(T |Y ) = H(T )� I(Y, T )
VI (Y, T ) = H(Y |T ) + H(T |Y )

As Meilǎ (2003) shows, VI is a metric on the space
of probability distributions whose value reflects the
divergence between the two distributions, and only
takes the value zero when the two distributions are
identical.

3 Maximum Likelihood via
Expectation-Maximization

There are several excellent textbook presentations of
Hidden Markov Models and the Forward-Backward
algorithm for Expectation-Maximization (Jelinek,
1997; Manning and Schütze, 1999; Bishop, 2006),
so we do not cover them in detail here. Conceptu-
ally, a Hidden Markov Model generates a sequence
of observations x = (x0, . . . , xn) (here, the words
of the corpus) by first using a Markov model to gen-
erate a sequence of hidden states y = (y0, . . . , yn)
(which will be mapped to POS tags during evalua-
tion as described above) and then generating each
word xi conditioned on its corresponding state yi.
We insert endmarkers at the beginning and ending
of the corpus and between sentence boundaries, and
constrain the estimator to associate endmarkers with
a state that never appears with any other observation
type (this means each sentence can be processed in-
dependently by first-order HMMs; these endmarkers
are ignored during evaluation).

In more detail, the HMM is specified by multi-
nomials �y and �y for each hidden state y, where
�y specifies the distribution over states following y
and �y specifies the distribution over observations x
given state y.

yi | yi�1 = y � Multi(�y)
xi | yi = y � Multi(�y)

(1)

We used the Forward-Backward algorithm to per-
form Expectation-Maximization, which is a proce-
dure that iteratively re-estimates the model param-
eters (�, �), converging on a local maximum of the
likelihood. Specifically, if the parameter estimate at
time � is (�(�),�(�)), then the re-estimated parame-
ters at time � + 1 are:

�(�+1)
y�|y = E[ny�,y]/E[ny] (2)

�(�+1)
x|y = E[nx,y]/E[ny]
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Figure 1: Variation in negative log likelihood with
increasing iterations for 10 EM runs from different
random starting points.

where nx,y is the number of times observation x oc-
curs with state y, ny�,y is the number of times state
y� follows y and ny is the number of occurences of
state y; all expectations are taken with respect to the
model (�(�),�(�)).

We took care to implement this and the other al-
gorithms used in this paper efficiently, since optimal
performance was often only achieved after several
hundred iterations. It is well-known that EM often
takes a large number of iterations to converge in like-
lihood, and we found this here too, as shown in Fig-
ure 1. As that figure makes clear, likelihood is still
increasing after several hundred iterations.

Perhaps more surprisingly, we often found dra-
matic changes in accuracy in the order of 5% occur-
ing after several hundred iterations, so we ran 1,000
iterations of EM in all of the experiments described
here; each run took approximately 2.5 days compu-
tation on a 3.6GHz Pentium 4. It’s well-known that
accuracy often decreases after the first few EM it-
erations (which we also observed); however in our
experiments we found that performance improves
again after 100 iterations and continues improving
roughly monotonically. Figure 2 shows how 1-to-1
accuracy varies with iteration during 10 runs from
different random starting points. Note that 1-to-1
accuracy at termination ranges from 0.38 to 0.45; a
spread of 0.07.

We obtained a dramatic speedup by working di-
rectly with probabilities and rescaling after each ob-
servation to avoid underflow, rather than working
with log probabilities (thanks to Yoshimasa Tsu-

298
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Aggregate Bigram Model
Saul and Pereira 1997

• Superficially similar to, but different than, a 
Hidden Markov Model

• Graphical model / generative story: 
intermediate state

• Linear algebra: low-rank approximation of 
standard bigram model (compare: Mnih 
and Hinton 2007’s log-bilinear model)

10

Assumption 1: Markov
p(w1..wT ) =

Y

t

p(wt | wt�1)

Assumption 2: latent variable

next latent state
(“transition” (??) probs)

generate word
(“emission” probs)

Params to learn:
For every word, prob of which state next?

Params to learn:
For every state, prob of which word to emit?

p(wt | wt�1) =
X

z21..K

p(z | wt�1) p(wt | z)
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Train with EM

11

Though not reported below, we also confirmed that
the results did not vary significantly for different ran-
domly drawn test sets of the same size.

The organization of this paper is as follows.
In Section 2, we examine aggregate Markov mod-
els, or class-based bigram models (Brown et al.,
1992) in which the mapping from words to classes
is probabilistic. We describe an iterative algo-
rithm for discovering “soft” word classes, based on
the Expectation-Maximization (EM) procedure for
maximum likelihood estimation (Dempster, Laird,
and Rubin, 1977). Several features make this algo-
rithm attractive for large-vocabulary language mod-
eling: it has no tuning parameters, converges mono-
tonically in the log-likelihood, and handles proba-
bilistic constraints in a natural way. The number
of classes, C, can be small or large depending on
the constraints of the modeler. Varying the number
of classes leads to models that are intermediate be-
tween unigram (C = 1) and bigram (C = V ) models.

In Section 3, we examine another sort of “inter-
mediate” model, one that arises from combinations
of non-adjacent words. Language models using such
combinations have been proposed by Huang et al.
(1993), Ney, Essen, and Kneser (1994), and Rosen-
feld (1996), among others. We consider specifically
the skip-k transition matrices, M(wt−k, wt), whose
predictions are conditioned on the kth previous word
in the sentence. (The value of k determines how
many words one “skips” back to make the predic-
tion.) These predictions, conditioned on only a sin-
gle previous word in the sentence, are inherently
weaker than those conditioned on all k previous
words. Nevertheless, by combining several predic-
tions of this form (for different values of k), we can
create a model that is intermediate in size and ac-
curacy between bigram and trigram models.

Mixed-order Markov models express the predic-
tions P (wt|wt−1, wt−2, . . . , wt−m) as a convex com-
bination of skip-k transition matrices, M(wt−k, wt).
We derive an EM algorithm to learn the mixing co-
efficients, as well as the elements of the transition
matrices. The number of transition probabilities in
these models scales as mV 2, as opposed to V m+1.
Mixed-order models are not as powerful as trigram
models, but they can make much stronger predic-
tions than bigram models. The reason is that quite
often the immediately preceding word has less pre-
dictive value than earlier words in the same sentence.

In Section 4, we use aggregate and mixed-order
models to improve the probability estimates from
n-grams. This is done by interposing these models
between different order n-grams in the smoothing
procedure. We compare our results to a baseline tri-

gram model that backs off to bigram and unigram
models. The use of “intermediate” models is found
to reduce the perplexity of unseen word combina-
tions by over 50%.

In Section 5, we discuss some extensions to these
models and some open problems for future research.
We conclude that aggregate and mixed-order models
provide a compelling alternative to language models
based exclusively on n-grams.

2 Aggregate Markov models

In this section we consider how to construct class-
based bigram models (Brown et al., 1992). The
problem is naturally formulated as one of hidden
variable density estimation. Let P (c|w1) denote the
probability that word w1 is mapped into class c.
Likewise, let P (w2|c) denote the probability that
words in class c are followed by the word w2. The
class-based bigram model predicts that word w1 is
followed by word w2 with probability

P (w2|w1) =
C∑

c=1

P (w2|c)P (c|w1), (1)

where C is the total number of classes. The hidden
variable in this problem is the class label c, which
is unknown for each word w1. Note that eq. (1)
represents the V 2 elements of the transition matrix
P (w2|w1) in terms of the 2CV elements of P (w2|c)
and P (c|w1).

The Expectation-Maximization (EM) algorithm
(Dempster, Laird, and Rubin, 1977) is an iterative
procedure for estimating the parameters of hidden
variable models. Each iteration consists of two steps:
an E-step which computes statistics over the hidden
variables, and an M-step which updates the param-
eters to reflect these statistics.

The EM algorithm for aggregate Markov models
is particularly simple. The E-step is to compute, for
each bigram w1w2 in the training set, the posterior
probability

P (c|w1, w2) =
P (w2|c)P (c|w1)∑
c′ P (w2|c′)P (c′|w1)

. (2)

Eq. (2) gives the probability that word w1 was as-
signed to class c, based on the observation that it
was followed by word w2. The M-step uses these
posterior probabilities to re-estimate the model pa-
rameters. The updates for aggregate Markov models
are:

P (c|w1) ←

∑
w N(w1, w)P (c|w1, w)∑

wc′ N(w1, w)P (c′|w1, w)
, (3)

P (w2|c) ←

∑
w N(w, w2)P (c|w, w2)∑

ww′ N(w, w′)P (c|w, w′)
, (4)
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Train with EM
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Figure 1: Plots of (a) training and (b) test perplexity versus number of iterations of the EM algorithm, for
the aggregate Markov model with C = 32 classes.

1 as cents made make take

2
ago day earlier Friday Monday month quarter
reported said Thursday trading Tuesday
Wednesday ⟨. . . ⟩

3 even get to

4
based days down home months up work years
⟨%⟩

5 those ⟨,⟩ ⟨—⟩

6 ⟨.⟩ ⟨?⟩

7
eighty fifty forty ninety seventy sixty thirty
twenty ⟨(⟩ ⟨·⟩

8 can could may should to will would

9 about at just only or than ⟨&⟩ ⟨;⟩

10 economic high interest much no such tax united
well

11 president

12 because do how if most say so then think very
what when where

13 according back expected going him plan used way

15 don’t I people they we you

16
Bush company court department more officials
police retort spokesman

17 former the

18
American big city federal general house military
national party political state union York

19 billion hundred million nineteen
20 did ⟨”⟩ ⟨’⟩

21 but called San ⟨:⟩ ⟨start-of-sentence⟩

22
bank board chairman end group members
number office out part percent price prices rate
sales shares use

23
a an another any dollar each first good her his its
my old our their this

24 long Mr. year

25
business California case companies corporation
dollars incorporated industry law money
thousand time today war week ⟨)⟩ ⟨unknown⟩

26 also government he it market she that there
which who

27 A. B. C. D. E. F. G. I. L. M. N. P. R. S. T. U.

28 both foreign international major many new oil
other some Soviet stock these west world

29
after all among and before between by during for
from in including into like of off on over since
through told under until while with

30
eight fifteen five four half last next nine oh one
second seven several six ten third three twelve
two zero ⟨-⟩

31 are be been being had has have is it’s not still
was were

32 chief exchange news public service trade

Table 2: Most probable assignments for the 300 most frequent words in an aggregate Markov model with
C = 32 classes. Class 14 is absent because it is not the most probable class for any of the selected words.)

the probabilities P (c|w1) or P (w2|c). Nevertheless,
in all our experiments, the ML aggregate Markov
models assigned non-zero probability to all the bi-
grams in the test set. This suggests that for large
vocabularies there is a useful regime 1 ≪ C ≪ V
in which aggregate models do not suffer much from
overfitting. In this regime, aggregate models can be
relied upon to compute the probabilities of unseen
word combinations. We will return to this point in

Section 4, when we consider how to smooth n-gram
language models.

3 Mixed-order Markov models

One of the drawbacks of n-gram models is that their
size grows rapidly with their order. In this section,
we consider how to make predictions based on a con-
vex combination of pairwise correlations. This leads

• Why evaluate on test data?

• Hyperparameters and under/overfitting for 
different models
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Learned model
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Figure 1: Plots of (a) training and (b) test perplexity versus number of iterations of the EM algorithm, for
the aggregate Markov model with C = 32 classes.
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the probabilities P (c|w1) or P (w2|c). Nevertheless,
in all our experiments, the ML aggregate Markov
models assigned non-zero probability to all the bi-
grams in the test set. This suggests that for large
vocabularies there is a useful regime 1 ≪ C ≪ V
in which aggregate models do not suffer much from
overfitting. In this regime, aggregate models can be
relied upon to compute the probabilities of unseen
word combinations. We will return to this point in

Section 4, when we consider how to smooth n-gram
language models.

3 Mixed-order Markov models

One of the drawbacks of n-gram models is that their
size grows rapidly with their order. In this section,
we consider how to make predictions based on a con-
vex combination of pairwise correlations. This leads
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Formal grammar and information theory 1245

over models can play an analogous regularizing role to a combinatorial complexity
measure.

The other role for hidden variables, capturing uncertainty in the interpretation
of particular experience, becomes especially interesting in modelling ambiguity. For
example, going back to Harris’s theory, each of the constraints involves covert choices
by the language user: assignment of types|positions in the partial order|to lexical
items; lexical choice according to selection probabilities; reduction choices accord-
ing to the distributional statistics of predictability; and linearization choices. More
generally, any model of language that appeals to non-observables, for instance any
model that assigns syntactic analyses, requires hidden variables.

Hidden variables representing uncertainty of interpretation can also be used to
create factored models of joint distributions that have far fewer parameters to esti-
mate, and are, thus, easier to learn, than models of the full joint distribution. As
a very simple but useful example, we may approximate the conditional probability
p(x; y) of occurrence of two words x and y in a given con≠guration as

p(x; y) = p(x)
X

c

p(y j c)p(c j x);

where c is a hidden `class’ variable for the associations between x and y in the
con≠guration under study. For a vocabulary of size V and C classes, this model uses
O(CV ) parameters rather than the O(N2) parameters of the direct model for the
joint distribution, and is thus less prone to over≠tting if C V . In particular, when
(x; y) = (vi; vi+ 1), we have an aggregate bigram model (Saul & Pereira 1997), which
is useful for modelling word sequences that include unseen bigrams. With such a
model, we can approximate the probability of a string p(w1 wn) by

p(w1 wn) = p(w1)
nY

i = 2

p(wijwi 1):

By using this estimate for the probability of a string and an aggregate model with
C = 16 trained on newspaper text, and by using the expectation{maximization (EM)
method (Dempster et al. 1977), we ≠nd that

p(Colourless green ideas sleep furiously)

p(Furiously sleep ideas green colourless)
2 105:

Thus, a suitably constrained statistical model, even a very simple one, can meet
Chomsky’s particular challenge.

A plausible and well-de≠ned model of the statistical dependences among the hidden
variables is, however, not in general su¯cient, since the problem of setting the corre-
sponding conditional probabilities from observable linguistic material is in most cases
computationally intractable (Abe & Warmuth 1992). Nevertheless, those intractabil-
ity results have not precluded signi≠cant algorithmic and experimental progress with
carefully designed model classes and learning methods, such as EM and variants,
especially in speech processing (Baum & Petrie 1966; Baker 1979). In particular, the
learning problem is easier in practice if interactions between hidden variables tend
to factor via the observed variables.

Phil. Trans. R. Soc. Lond. A (2000)

 on March 25, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

(1) Colorless green ideas sleep furiously.
(2) Furiously sleep ideas green colorless.
 
[T]he notion “grammatical in English” cannot be identified in any way with the 
notion “high order of statistical approximation to English”. It is fair to assume 
that neither sentence (1) nor (2) (nor indeed any part of these sentences) has 
ever occurred in an English discourse. Hence, in any statistical model for 
grammaticalness, these sentences will be ruled out on identical grounds as 
equally ‘remote’ from English.

Power of latent variables

Pereira (2000)

Chomsky (1957)
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• Latent variables: let the model learn hidden 
structure in the data.

• Typically for partial/un-supervised settings

• EM: a meta-algorithm for latent-variable learning

• Use when observed-variable MLE is easy
(e.g. count-estimated multinomial models)
but marginal MLE is hard

• Issues with local optima and convergence

• Alternatives

• MCMC

• Spectral learning

15
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