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ABSTRACT
Distributed computation of Voronoi cells in sensor networks,
i.e. computing the locus of points in a sensor field closest
to a given sensor, is a key building block that supports a
number of applications in both the data and control planes.
For example, knowledge of Voronoi cells facilitates efficient
methods for computing the piece-wise approximation of a
field, whereby each sensor acts as a representative for the
set of points in its Voronoi cell; awareness of Voronoi bound-
aries and Voronoi neighbors is also useful in load balanc-
ing and energy conservation. The methods currently ad-
vocated for distributed Voronoi computation in sensor net-
works are heuristic approximations that can introduce sig-
nificant inaccuracies that are difficult to rigorously quantify;
we demonstrate that these methods may err by a factor of
5 or more in some circumstances. We present and prove
an exact method which eliminates these inaccuracies, at the
cost of increased messaging overhead, but without necessi-
tating contact with the entire network. To our knowledge,
this is the first distributed algorithm that computes accu-
rate Voronoi cells without requiring all-to-all communica-
tion. We implement it as a TinyOS module and quantita-
tively analyze its performance.

Categories and Subject Descriptors
E.1 [Data Structures]: Distributed data structures—Voro-
noi diagrams; H.4.3 [Information Systems Applications]:
Communications Applications

General Terms
Algorithms, Design, Performance

Keywords
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1. INTRODUCTION
The distributed and resource-constrained nature of sen-

sor networks often demands unique solutions to otherwise
well-understood problems. One such problem is the accu-
rate determination of Voronoi cells. In the context of sensor
networks, a sensor’s Voronoi cell is the area closer to that
sensor than to any other sensor. This area has many natu-
ral interpretations in sensor networks; for example, it might
be the area where that sensor has the most authoritative or
representative readings. However, while the computation of
Voronoi cells is a standard problem in computational geom-
etry, it is much less understood in the distributed setting
of sensor networks. Indeed, prior to this work the only dis-
tributed algorithm for the exact computation of a Voronoi
cell necessitated contact with all of the sensors in the net-
work [4]. Several recently proposed heuristic approaches re-
quire fewer messages [25, 28], but provide no guarantees of
the correctness of their result. In this paper we present an
algorithm which is efficient in typical cases, but is still prov-
ably exact.

A sensor network typically is comprised of a large number
of small battery-powered systems or motes [15] distributed
over a wide area, communicating over low-powered, short-
range radios. These motes are often aware of their own loca-
tions, either through GPS or through an array of inference
techniques [21, 22]. They can perform a variety of measure-
ments of their environment, and their collective capability
can be quite substantial when there are many nodes in the
network. Indeed, proponents of sensor networks have pro-
posed networks of thousands or hundreds of thousands of
sensors communicating and working together. However the
extreme scale involved, combined with the low bandwidth
between sensors and node/link failures, result in many chal-
lenges. In particular, protocols for sensor networks must be
able to tolerate failures while being quite parsimonious in
their communication.

Sensor network applications typically wish to learn about
the environment being sensed, not the sensors or systems
themselves, whether collecting individual measurements or
computing averages or other functions. For example, con-
sider a query for the average temperature over a region
where sensors are distributed in a non-uniform pattern. As
pointed out in [11], the average over an area is not the same
as the average over the sensors, and in practice, these two
quantities can be quite different. A simple average of all the
sensor readings, for example, will be biased towards areas
with more sensors.

Instead, a more accurate approximation to the average



temperature over the region could be reached by weighting
each sensor’s reading proportional to the area which is clos-
est to that sensor. These regions averaged over are in fact
the Voronoi cells of each individual sensor. Thus Voronoi
cells give a natural weighting scheme for such applications.

Many other problems could benefit from improved Voronoi
cell algorithms, as well. There have been various efforts to
bridge over techniques from spatial databases [12] to sensor
networks; problems which are simplified given the Voronoi
cells of the network include range, nearest neighbor and re-
verse nearest neighbor queries [9, 26], and spatial aggrega-
tion [13, 25]. Accurate Voronoi cells aid various monitoring
problems, including target localization and tracking [5] and
random sampling of sensors [2], as well as problems of the
control plane such as energy conservation [28] and load bal-
ancing [3]. In addition, performance of geographic routing
protocols such as GPSR [16] may be improved given knowl-
edge of Voronoi cells.

For each of the problems enumerated above, the correct-
ness of the results hinges on the correct computation of the
Voronoi cells. But given the communication and computa-
tional constraints of sensor networks, the well-understood
centralized and even parallel algorithms for computing the
set of Voronoi cells (a Voronoi diagram) are inapplicable.
Instead, the literature so far has either relied on lightweight
approximations, such as only considering the set of nodes
within k hops, for some small k [25, 28], or exact but expen-
sive methods which involve contacting the entire network, at
a prohibitive cost [4]. In this paper, we present a distributed
algorithm that computes provably exact Voronoi cells with-
out necessarily contacting the entire network; to our knowl-
edge, this is the first such method in its class. The algorithm
begins with an initial approximation of the local Voronoi cell
at each node, based on neighboring nodes. Whereas existing
heuristic approximations terminate at this point, our algo-
rithm instead leverages geographic routing primitives such
as GPSR [16] to systematically refine the Voronoi cell and
verify its correctness.

The remainder of this paper is organized as follows: in
Section 2 we formally define Voronoi cell and discuss its
construction. We discuss the existing distributed solutions
in Section 3 and present our algorithm in Section 4. Practi-
cal implementation issues and experimental results are pre-
sented in Section 5, and Section 6 concludes.

2. VORONOI CELLS AND DIAGRAMS
We begin our discussion with basic definitions, adapted

from [8].

Definition 1. (Voronoi Cell) The Voronoi cell of a node
p with respect to a set of nodes N , denoted VN (p), is the set
of points in the plane which are closer to p than any node
in N − {p}.

Note that VN (p) is not necessarily closed.

Fact 1. For any node p ∈ N , the Voronoi cell VN (p) is
unbounded if and only if p is on the convex hull of N . If
VN (p) is bounded, then VN (p) is a convex polygon.

For sensor network applications, we are typically inter-
ested in a sensor field A of bounded extent, where N ⊆ A.
In this case, we wish to calculate the region A∩VN (p) which
is always bounded.
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Figure 1: Voronoi diagram of a 15-node topology
where two nodes sharing a Voronoi cell edge (De-
launey neighbors) are 14 hops apart.

Definition 2. (Voronoi vertex) A Voronoi vertex is a ver-
tex of the convex polygon that is the boundary of a given
Voronoi cell. The set of Voronoi vertices for node p defines
its Voronoi cell.

Definition 3. Let H(p1, p2) be the half-plane defined by
the perpendicular bisector of p1 ↔ p2 containing p1.

Fact 2. A point x is closer to p1 than p2 if and only if x
lies in H(p1, p2).

Theorem 1 (Voronoi Cell Construction). For any
node p ∈ N ,

VN (p) =
\

p′∈(N−p)

H(p, p′).

Property 1. (Voronoi Cell Monotonicity)
For any sets of nodes N1, N2 in which N1 ⊆ N2,

∀p ∈ N1, VN2(p) ⊆ VN1(p).

That is, the Voronoi cell of node p in Definition 1 decreases
monotonically as more nodes are added to set N . If only a
subset of the nodes in the network are known, then an up-
per bound is computed, in the sense that the area returned
contains the true Voronoi cell.

Definition 4. (Voronoi Diagram) The Voronoi diagram
DN of set N is the set of Voronoi cells of nodes in N .

Fig. 1 shows the Voronoi diagram of a 15-node sensor net-
work. The sum of areas of exact Voronoi cells will yield the
area of the network field A. If some cells are not computed
exactly, due to knowledge of only a subset of nodes in N ,
then, by Property 1, they will overlap.

Fact 3. (Trivial Voronoi Diagram exactness)
If DN = {VN (pi)|pi ∈ N}, then DN = A.

Fact 3 states that if the Voronoi cell of each node is con-
structed with respect to all other nodes in the network N ,



then each cell will be exact. Thus, the set of Voronoi cells
will be a partition of the sensor field A. Therefore, fact 3
provides a method to compute Voronoi cells. It is the ba-
sis of the existing heavyweight approaches for distributed
Voronoi computation. However, each node needs only a sub-
set of nodes to compute its cell, namely the set of nodes with
which it shares Voronoi cell edges (also known as Delaunay
neighbors in computational geometry). We call this subset
Di for node pi and we can now state our final fact:

Fact 4. (Voronoi cell exactness) If VX(pi) and X = Di,
then VX(pi) is exact, and if DN = {VDi(pi)|pi ∈ N}, then
DN = A.

Note that Di may not be a subset of communication neigh-
bors. For example, this is the case for node 0 on Fig. 1. Our
distributed algorithm performs a search for nodes in Di us-
ing geographic routing.

3. EXISTING APPROACHES
Current distributed algorithms for Voronoi cell computa-

tion [4, 14, 25] use variations of the following basic k-hop
neighbor heuristic.

Algorithm 1 k-hop neighbor Voronoi

1: Request locations of all neighbors within k hops of the
base station at point p.

2: Let K be the set of points returned by Step 1.
3: Return VK(p).

By Property 1, it follows that the Voronoi cell supported
by members of the k-hop neighborhood encloses the actual
cell V (p). However, it is straightforward to construct ex-
ample graphs for which all Voronoi neighbors of p are not
contained within the k-hop neighborhood, for any k < n−1
(see Fig. 1). Also, as our experimental results in Section
5.2 indicate, use of this heuristic with the moderate values
of k recommended in practice often leads to approximate
Voronoi cells where there is significant overlap.

In [14, 25] the node uses its 1-hop neighbors to construct
initial Voronoi cell and refines it gradually as it captures
packets containing location information from other nodes in
the network. The authors do not claim that their method
outputs the exact Voronoi cell. In [4], the authors mitigate
this problem by having every node flood the network with
d beacons containing location information, where d is the
network diameter in hops. Since every node knows of every
other node, their algorithm is exact, but at the transmission
cost of O(d× n2) messages.

4. DISTRIBUTED VORONOI COMPUTATION
We now present a framework and algorithms for exactly

constructing Voronoi cells. This framework generalizes ear-
lier “collection” based efforts to construct Voronoi diagrams
in a distributed fashion, and makes explicit the requirements
for their success. We then leverage the geographic routing
methods of [16] to build an exact method.

Our key idea is to use the monotonicity property of Voronoi
cells, stated as Property 1. For each sensor p, we initialize
its tentative Voronoi cell to the region induced by a small
subset of nodes. By monotonicity, this region is known to

enclose the actual Voronoi cell V (p). Then, while an addi-
tional node exists whose inclusion reduces the extent of the
tentative Voronoi cell of p, we add that node to the sub-
set. The procedure terminates when no such node exists, in
which case V (p) has been identified. This algorithm is pre-
sented below as Algorithm 2, and relies on an appropriate
initialization method, and an efficient method for identify-
ing a node that improves the Voronoi cell of p. We present
those next.

Algorithm 2 Exact Voronoi

1: Let S0 be an initial set of nodes that yields a bounded
Voronoi cell VS0(p).

2: Invoke node discovery method D to identify a set of
nodes ∆S which reduce VS0(p).

3: if ∆S = ∅ then
4: Return VS0(p).
5: else
6: Set S0 = S0 ∩∆S and repeat Step 2.
7: end if
8: Return VS0(p).

4.1 Initialization
We assume that each sensor is aware of the boundaries of

network field A, which is considered to be the Voronoi cell
at time zero. Since we assume that our network contains
more than one node and is connected, each node has at
least one communication neighbor which can conveniently
reduce the time-zero cell. In our experiments, A reduced
by all 1-hop communication neighbors is used as the initial
cell. In theory, any convex polygon that contains V (p) can
be used to initialize this algorithm.

4.2 Incremental Update Procedure

Definition 5. Consider the Voronoi cell VX(p) of node p
induced by a subset of nodes X. We say that addition of
node q 6∈ X reduces p’s Voronoi cell iff VX∪{q}(p) ⊂ VX(p),
that is, perpendicular bisector of p ↔ q defining H(p, q)
intersects VX(p).

Lemma 1. Consider a bounded Voronoi cell VX(p). A
node q reduces VX(p) iff there exists a vertex z of VX(p)
such that d(q, z) < d(z, p).

Proof. We prove the only-if direction first. Assume there
exists a vertex z of VX(p) such that d(q, z) < d(z, p). Con-
sider the Voronoi cell after addition of q: VX

S
{q}(p). Point

z lies strictly closer to q than to p, therefore it lies outside of
p’s Voronoi cell, and hence node q reduces p’s Voronoi cell.

We now prove the if direction. Assume there exists a node
q that reduces VX(p). Now assume for the sake of contra-
diction that there does not exist a vertex z of VX(p) such
that d(q, z) < d(z, p). Then d(q, z) ≥ d(z, p) for all vertices
z ∈ VX(p). However, q can not reduce VX(p) in this case,
since perpendicular bisector defining H(p, q) can not inter-
sect VX(p), thus contradicting the original assumption.

Lemma 1 gives necessary and sufficient conditions for a
procedure which determines if a node exists that reduces p’s
Voronoi cell. We embody those conditions in the following
class of methods that locate such a node if one exists.



Definition 6. (Admissible Discovery Method) Consider the
Voronoi cell VX(p) of a node induced by a subset of nodes
X. A node discovery method D is admissible if it always
returns a node p′ /∈ X that reduces VX(p) if such a node
exists, and nothing otherwise.

It is quite easy to realize an admissible discovery method
given a geographic routing protocol such as GPSR [16].

Fact 5. (Geographic Routing [16, 23]) A GPSR packet
sent to an arbitrary point x in the plane is always routed
to the reachable node p minimizing d(p, x), where d denotes
Euclidean distance.

Algorithm 3 Discovery by Vertex Verification

1: for each vertex v of VX(p) do
2: Use GPSR to identify the node p′ closest to v.
3: if d(p′, v) < d(p, v) then
4: Report p′ as a node that reduces p’s Voronoi cell.
5: end if
6: end for
7: Report that no vertices reduce p’s Voronoi cell.

From Fact 5, this is an admissible discovery method. It
clearly terminates after |S| calls, since it eliminates one node
from consideration as a Voronoi neighbor at each call. Also,
in practice, one would not recheck any Voronoi vertex for
which a nearer neighbor was not identified.

Discovery by vertex verification works and is conceptually
simple, but can be expensive. If the initial polygon is large,
such as when using the cells induced by 1-hop neighbors in
a sparsely connected network, initial probes must cross the
network diameter. Furthermore, this discovery method can
result in a bottleneck if all sensors initially start with similar
Voronoi neighbors and probes are sent to the same small
sets of nodes. The following improvement to Algorithm 3
heuristically addresses both of these issues while remaining
an admissible strategy. This is one of the variants that we
implement in our experimental work.

Algorithm 4 Discovery by Vertex Verification

1: for each vertex v of VX(p) do
2: Use GPSR to route towards point v.
3: As soon as the GPSR packet is routed through any

node q such that d(q, v) < d(p, v), return q as a node
that reduces p’s Voronoi cell, and stop the probe.

4: end for
5: Report that no vertices reduce p’s Voronoi cell.

Since in a non-degenerate Voronoi diagram1 most Voronoi
vertices are present in the cells of three nodes, Algorithm 4
usually sends three probes to verify a single vertex. The

1The condition for non-degeneracy is that no point in the
plane is equidistant to more than three nodes. This con-
dition would be violated, for instance, if one could draw a
square by connecting four nodes with line segments. In that
case, the center of the square would be a vertex present in
Voronoi cells of these four nodes. In this work, we assume
non-degeneracy holds; in reality, it can be easily ensured via
small random perturbations to node locations.

bandwidth usage can be reduced if nodes with adjacent cells
cooperate. The following algorithm requires additional state
per node in the order of the size of the Voronoi cell.

Algorithm 5 Cooperative Vertex Verification

1: for each vertex v of VX(p) do
2: Notify nodes n and m where v ∈ V (n) and v ∈ V (m)

of intent to verify v.
3: Invoke Steps 4 and 4 of Algorithm 4 to verify v.
4: Report output of Step 5 to n and m, including q if it

reduces VX(p)
5: end for
6: Report that no vertices reduce p’s Voronoi cell.

In addition to Algorithm 4, we implement Algorithm 5,
and compare the two algorithms head-to-head. In our im-
plementation of Algorithm 5, nodes n and m use a timeout
mechanism to recover in cases where the verification report
from node p is not heard.

5. EXPERIMENTAL EVALUATION
We now present the experiments involving our algorithm.

We start by outlining the methodology behind our simula-
tions in Section 5.1, and then examine Voronoi cell overes-
timates of the baseline k-hop Algorithm 1 in Section 5.2.
We compare the non-cooperative and cooperative versions
of our algorithm in Section 5.3 and conclude the section with
the analysis of TOSSIM experiments in Section 5.4.

5.1 Methodology
Our experiments were performed using the SENS [20] sim-

ulation platform, developed at Boston University, and the
TinyOS Simulator (TOSSIM) [18].

The experimental setup for SENS simulations consists of
100 nodes placed uniformly at random on a 100 × 100-unit
field, communicating via fixed-range idealized radios. We
generate 17 different random topologies, each for a different
radio range r = {14..30}. Finally, 50 5-unit length radio-
opaque obstacles are placed on the field, with centers cho-
sen uniformly at random and equiprobably oriented N/S or
E/W. This procedure, which we borrow from [17], adds a
degree of realism to the synthetic topologies, since the ide-
alized radio model is known to be a poor approximation of
wireless connectivity [1]. We then use CLDP [17] to extract
a planar subgraph of the resulting network topology for use
by GPSR [16].

TOSSIM allows actual TinyOS implementations to be used
in simulation, and our TOSSIM experiments used an imple-
mentation of Algorithm 5 along with CLDP and GPSR mod-
ules from the USC Embedded Networks Laboratory [27].

Topologies used in our TOSSIM simulations consist of 20
nodes each, with nodes placed uniformly at random on a
60 × 60-unit field, connected by idealized radios of ranges
between 15 and 40 units in increments of 5. Again, some
links were disconnected by 10 4-unit obstacles, randomly
placed in the same manner as in the SENS experiments.

Five topologies were generated at each radio range, for a
total of 30. Simulations were run 20 times on each of the
30 topologies, at bit error rates of 0, 0.037%, and 0.077%,
corresponding to packet loss rates for 36-byte packets of 0,
10, and 20 percent. The entire number of simulation runs
was 30× 20× 3 or 1,800 runs.
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Figure 3: Messaging efficiency comparison between non-cooperative and cooperative Voronoi cell construction
algorithms (Algorithms 4 and 5, respectively). The same topologies for each radio range were used by both
algorithms. The results were computed by summing the number of messages sent by each node and dividing
by the number of nodes. Values represent averages of 10 runs per topology.
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Figure 2: Relationship between the overestimate of
the sum of areas of Voronoi cells and network con-
nectivity. Neither 1-hop nor 2-hop neighbors pro-
vide enough information to obtain accurate Voronoi
cells in sparse topologies, and computation using
1-hop neighbors under-performs the use of 2-hop
neighbors on all tested topologies.

5.2 Validation of Motivation
We first examine the cell-overestimate errors of Algorithm

1. We use values of k = {1, 2}, since k = 1 is cited in pre-
vious work on distributed voronoi cell computation [25, 14],
and k = 2 is reasonable given that nodes in several variants
of link-state routing algorithms use two-hop neighborhood
information [6, 24]. Our evaluation metric is the error in the
network field area if summed Voronoi cell areas are used to
compute it, defined as follows:

Ek
N =

P
i∈N A(V k

i )

100× 100
× 100% (1)

where A(V k
i ) is the area of i-th node’s k-hop Voronoi cell.

Fig. 2 shows the relationship between the overestimate
of our metric and connectivity of the 17 random 100-node

SENS topologies described in the previous section. As ex-
pected, Algorithm 1 performs poorly in sparse settings for
both values of k. Notably, even when k = 2, some Voronoi
cells are significantly overestimated in moderately dense topo-
logies. Algorithm 1 returns dismal results across all topolo-
gies for k = 1. Since sensor networks are generally sparse, if
one wants to perform operations requiring accurate Voronoi
cells (such as a piece-wise approximation of a field [13])
one can not rely on k-hop Voronoi computation algorithm.
Thus, there is a strong motivation to systematically look
beyond close neighbors while constructing Voronoi cells.

5.3 Validation of the Value of Cooperation
Having established the necessity for exact Voronoi cell

computation in some applications, we proceed to evaluate
two different implementations of our solution. Section 4 de-
scribes two algorithms: Algorithm 4 which sends a probe
(a GPSR packet) towards each unverified vertex, and Algo-
rithm 5 which notifies its Voronoi neighbors with whom it
shares a vertex before sending a probe towards it, and noti-
fies them again with the result. Algorithm 4 is conceptually
simpler since it requires no cooperation among nodes. How-
ever, Algorithm 5 has the potential to substantially reduce
messaging by eliminating the redundant probes.

The results of SENS evaluation on Fig. 3 confirm the lat-
ter assertion. Without cooperation, each vertex v must be
verified once by each node pi which contains v in its approx-
imate Voronoi cell at some step of Voronoi cell construction.
With cooperation, only one node (say p0) will verify v, and
in the process send two messages to each pi which contain v
in their approximate Voronoi cells. Since each probe verify-
ing v must at minimum visit each node whose true Voronoi
cell contains v, in the typical case the cooperative algorithm
will require fewer—sometimes many fewer—transmissions.

The decrease in the number of probes sent when the co-
operative approach is used is shown in Fig. 3(a); the effect
on the total messaging rate (which is different due to multi-
hop transmission of probes) is shown in Fig. 3(b). For our
TOSSIM implementation the cooperative approach of Algo-
rithm 5 was chosen, due to its superior performance.



5.4 TOSSIM Simulations
We will now describe the implementation of the Voronoi

module for TinyOS, the results from experiments, and the
limitations of this system.

5.4.1 Implementation
We implemented Algorithm 5 as a module for TinyOS

1.1. Our module runs on top of the USC implementation of
GPSR and CLDP protocols for TinyOS [27], and provides
interfaces for an application to send GPSR messages as well
as to access the Voronoi cell. We use the tightly-coupled
routing mode in USC GPSR which introduces considerable
delay during message transmission. However, this seems to
be the only non-invasive method of stopping the messages
(and performing the comparison in Step 4 of Algorithm 4)
in the higher layer.

Initially, unverified vertices are placed on a verification
queue in random order. As new Voronoi neighbors are found
via probing, new vertices are placed at the end of this queue.
Vertices being probed are taken off the verification queue
and a timing mechanism is associated with each probe: if
three consecutive probes for the same vertex do not return,
the vertex is returned to the end of queue. If a message
is received from another node stating the intent to start
verifying a common vertex, this vertex is also taken off the
verification queue and associated with a countdown timer
equal to slightly more than three probe time-out periods.
Upon expiration of this timer, the vertex is placed back on
the queue. This mechanism ensures that each node will
eventually verify its cell, providing robustness against packet
losses—though it is possible that two nodes verify the same
shared vertex. The complete implementation is slightly over
2,500 lines of nesC code.

5.4.2 Results
The results of TOSSIM simulation show that Algorithm

5 performs better on average in sparse network setting than
the only other existing exact Voronoi computation approach,
which involves flooding the network d times, as described in
Section 3 and in [4]. We present the results for two metrics:
the number of probes and the total number of packets sent
by the Voronoi module on each node. Each probe corre-
sponds to steps 4 and 4 in Algorithm 4; at each hop GPSR
passes the probe through the Voronoi module, resulting in
a packet transmission at each node in the path. Thus the
“number of transmissions” metric, when summed over all
nodes, gives the total number of radio packets sent during
algorithm execution, exclusive of error retransmission, frag-
mentation, and routing protocol messages.

Fig. 4(b) shows that between 55 and 70 messages are re-
quired on average. This is better than flooding for networks
of diameter more than 4 hops; the sparse network topolo-
gies generated for our experiments typically had diameters
of between 8 and 14 hops.

The number of probes sent is comparable to SENS re-
sults and is shown on Fig 4(a). Regression analysis in Table
3 shows that additional vertices correlate with additional
probes, as we would expect. The coefficient of ≈ 0.5 on the
Voronoi cell size variable means that we expect to use one
additional probe for two marginal vertices. This is due to
the cooperative nature of the Algorithm 5 where only one
node attempts to verify a shared vertex.

Table 1: Average number of messages sent by
TinyOS Voronoi module

Bit error rate Mean messages sent 95% conf. range
0.00000 62.031 10.11
0.00037 62.838 10.47
0.00077 63.245 8.13

Table 2: Average number of probes sent by TinyOS
Voronoi module

Bit error rate Mean probes sent 95% conf. range
0.00000 4.0515 0.2844
0.00037 4.0621 0.2866
0.00077 4.0373 0.2837

Notably, neither the number of messages sent nor the
number of probes is significantly affected by the bit error, as
the Tables 1 and 2 show; this is an artifact of the link-layer
re-transmission scheme employed by USC GPSR implemen-
tation. Due to this effect, further investigation is needed to
experimentally quantify the cost of recovering from message
loss at the Voronoi cell computation level.

We have included a facility to track the amount of time it
takes to construct a Voronoi cell. As expected, it is propor-
tional to the final number of vertices in it and the number
of probes sent, as shown by regression analysis on Table 4.
There seems to be no significant correlation between num-
ber of neighbors to which node is connected and time to
compute the cell; nor does the link bit error rate make any
meaningful difference. The majority of nodes in our experi-
ment took less than a minute to compute their Voronoi cells,
but some outliers required several hours. We suspect that
this is due to the use of very conservative inter-probe tim-
ings in our algorithm, but are still investigating this effect.

5.4.3 Limitations
The Voronoi cell computation module was developed in

order to be deployed on wireless sensor nodes such as the
Mica2 [15] and Telos B [19] platforms. Practical deploy-
ment on these systems was complicated by several fac-
tors. Resource requirements were problematic - although
the memory usage of the Voronoi module itself is modest
(2 kB RAM and 10 kB code space), it depends on the
USC CLDP/GPSR module for geographic routing primi-
tives. Since CLDP/GPSR requires an extra 2.5 kB RAM
and 45 kB code space, additional optimization is required
in order to deploy this system on either the Mica2, with 4
kB RAM and 128 kB code space, or the TelosB, with 10 kB
RAM and 48 kB code space. The numeric precision required
in order to perform repeated calculations of line intersections
without accumulated round-off error posed an additional is-
sue. The highest precision data type available on either the
Mica or Telos platforms is a 32-bit float, and operations on
these are very slow (about 20k ops/sec on the Mica). The
USC GPSR implementation itself uses 16-bit integers for x
and y coordinates, resulting in further restrictions, as the al-
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Figure 4: Performance of TinyOS Voronoi module across topologies of varying connectivity. Five topologies
for each radio range were used by both algorithms, and TOSSIM was run 20 times at 0, 0.037% and 0.077%
bit error rates on each topology. The results we computed by summing number of messages sent by each
node in each run and dividing by the number of nodes.

Table 3: Dependent variable: Probes Sent

Variable Coeff. Std. Err t-stat p-val
const 1.3812 0.0761 18.1597 0.0000
Vertices/cell 0.5070 0.0142 35.8812 0.0000

Mean of dependent variable 4.05028
S.D. of dependent variable 1.45827
Adjusted R̄2 0.152326

Table 4: Dependent variable: Time to compute
Voronoi diagram (in ms)

Variable Coeff. Std. Err t-stat p-val
const -2.8807e-06 264404. -10.8951 0.0000
Vertices/cell 2.3214e+06 52164.0 44.5012 0.0000
Probes sent -1.4687e-06 40173.4 -36.5580 0.0000

Mean of dependent variable 3.3920e+06
S.D. of dependent variable 5.2766e+06
Adjusted R̄2 0.2521
F (2, 7157) 1207.26

gorithm will fail if distinct vertices are mapped to the same
grid coordinates. In order to avoid this, we were restricted to
random topologies containing no more than about 20 nodes.

6. CONCLUSION
We have presented a fully distributed algorithm for com-

putation of Voronoi cells in a sensor network setting. To
our knowledge, it is the first method of its kind to pro-
vide construction of provably exact cells without requiring
each node to contact all other nodes in the network. The
results from the experiments show that this exactness guar-
antee has its costs, both in messages sent and time. How-
ever, for tasks requiring precise information about Voronoi

cell boundaries, the algorithm proposed is a wholly feasible
method, and more efficient than previously known one. To
address some of the resource constraints encountered, we en-
vision its deployment on more powerful base station nodes
within hierarchical networks [10]. If lightweight geographic
routing becomes available, our TinyOS module may also be
deployed in smaller motes. While the memory footprint and
precision of computation required may have been problem-
atic on small systems like Mica and Telos, larger motes like
Stargate [7] have ample resources to run our algorithm. We
anticipate running this algorithm on a testbed of such sys-
tems in the future.

In the near future we plan on investigating other per-
formance trade-offs by tuning implementation parameters
such as timeouts and number of probes sent. Additional
near-term modifications include changes to the USC GPSR
implementation in order to handle higher-precision floating
point coordinates, thereby addressing the problem of limited
coordinate precision.

In future research, we are considering other vertex ver-
ification methods. For example, the nodes on the edge
of the graph send a disproportionate number of messages
while probing vertices on the boundaries of the network
field; perhaps this can be mitigated by gathering additional
state about locations of these edge nodes. Another area of
planned exploration is the application of geographic routing
to other distributed computational geometry problems, such
as finding the convex hull.
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