

# Approximately Uniform Random Sampling in Sensor Networks

Boulat A. Bash, John W. Byers and Jeffrey Considine







#### Data aggregation

- Approximations to COUNT, SUM, AVG, MEDIAN
- Existing work does not use sampling
  - TAG (Madden et al. 2002)
  - State of the art: FM sketches (Considine et al. 2004)

#### Randomized algorithms

e.g. randomized routing





- What is this talk about?
  - Selecting (sampling) a random node in a sensornet
- Why is sampling hard in sensor networks?
  - Unreliable and resource-constrained nodes
  - Hostile environments
  - High inter-node communication costs
- How do we measure costs?
  - Total number of fixed-size messages sent per query



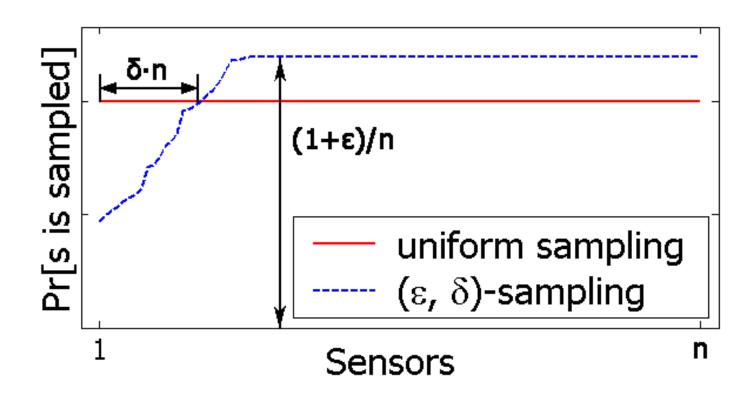


- Exact uniform random sampling
  - Previous work
- Approximately uniform random sampling
  - Naïve biased solution
  - Our almost-unbiased algorithm
  - Experimental validation
  - Heuristics for improving samples
- Preliminary simulations
- Conclusions and future work



# Sampling Problem



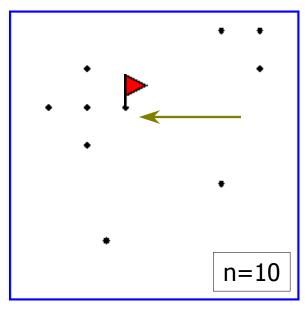

- Exact uniform random sampling
  - Each sensor s is returned from network of n reachable sensors with probability 1/n
- Existing solution (Nath and Gibbons, 2003)
  - Each sensor s generates (r<sub>s</sub>, ID<sub>s</sub>) where r<sub>s</sub> is a random number
  - Network returns ID of the sensor with minimal r<sub>s</sub>
  - Cost: Θ(n) transmissions



# Relaxed Sampling Problem



•  $(\varepsilon, \delta)$ -sampling




• Each sensor s is returned with probability no greater than (1+ε)/n, and at least (1-δ)·n sensors are output with probability at least 1/n



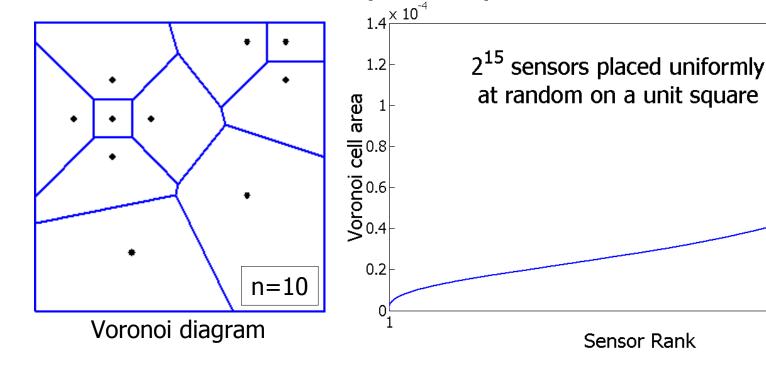
#### Spatial Sampling

Return the sensor closest to a random (x,y)





- Possible with geographic routing (GPSR 2001)
  - Nodes know own coordinates (GPS, virtual coords, pre-loading)
  - Fully distributed; state limited to neighbors' locations
- Cost: Θ(D) transmissions, D is network diameter

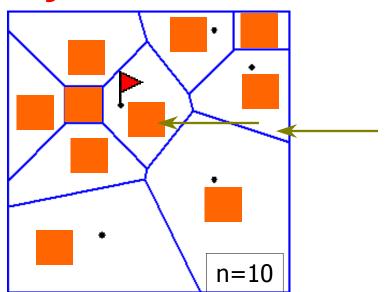



# Pitfall in Spatial Sampling



2^15

- Bias towards large <u>Voronoi cells</u>
  - Definition: Set of points closer to sensor s than any other sensor (Descartes, 1644)
  - Areas known to vary widely






### Removing Bias



Rejection method



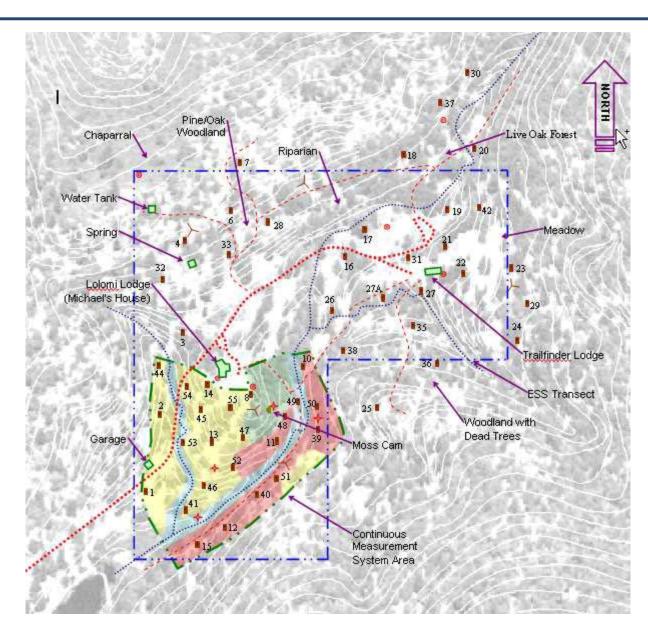


- In each cell, mark area of smallest Voronoi cell
- Only accept probes that land in marked regions
  - In practice, use Bernoulli trial for acceptance with  $P[accept] = A_{min}/A_s$  (von Neumann, 1951)
  - Find own cell area A<sub>s</sub> using neighbor locations
  - Need  $c = A_{ava}/A_{min}$  probes per sample on average



# Rejection-based Sampling



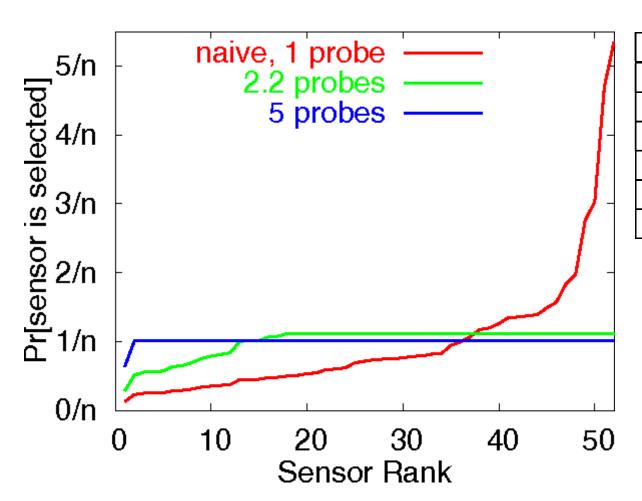

- Problem: Minimum cell area may be small
- Solution: Under-sample some nodes
  - Let  $A_{threshold} \ge A_{min}$  be globally-known cell area
  - 1. Route probe to sensor s closest to random (x,y)
  - 2. If  $A_s < A_{threshold}$ , then sensor s accepts Else, sensor accepts with  $Pr[acc] = A_{threshold}/A_s$
- A<sub>threshold</sub> set by user
  - For (ε, δ)-sampling, set to the area of the cell that is the k-quantile, where k = min(δ, ε/(1+ε))
- Cost: Θ(cD) transmissions



#### James Reserve Sensornet



**Computer Science** 






#### James Reserve Sensornet



#### 52 sensors



| <b>E</b> [#probes] | ε      | δ     |  |
|--------------------|--------|-------|--|
| 1.0 (naïve)        | 4.3    | 0.69  |  |
| 1.5                | 0.48   | 0.46  |  |
| 2.2                | 0.12   | 0.23  |  |
| 3.1                | 0.041  | 0.15  |  |
| 4.1                | 0.012  | 0.038 |  |
| 5.0                | 0.0072 | 0.019 |  |



# Random topology



■ 2<sup>15</sup> sensors randomly placed on a unit square

| <b>E</b> [#probes] | ε      | δ     |  |
|--------------------|--------|-------|--|
| 1.0 (naïve)        | 3.8    | 0.57  |  |
| 1.3                | 0.27   | 0.41  |  |
| 2.1                | 0.051  | 0.15  |  |
| 3.1                | 0.017  | 0.06  |  |
| 4.0                | 0.0079 | 0.029 |  |
| 5.0                | 0.0042 | 0.017 |  |

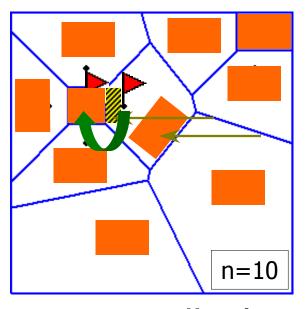


# **Improving Algorithm**



- Put some nodes with small cells to sleep
  - No sampling possible from sleeping nodes
  - Similar to power-saving schemes (Ye et al. 2002)

#### Virtual Coordinates


- Node locations assigned using local connectivity information (Rao et al. 2003)
- Hard lower bound on inter-sensor distances



### Improving Algorithm



#### Pointers





- Large cells donate their "unused" area to nearby small cells
- When a large cell rejects, it can probabilistically forward the probe to one of its small neighbors



#### Objectives

Avoid the following behavior



- Show feasibility of implementation
- Demonstrate scalability
  - Contrast with previous work



### Simulation Setup

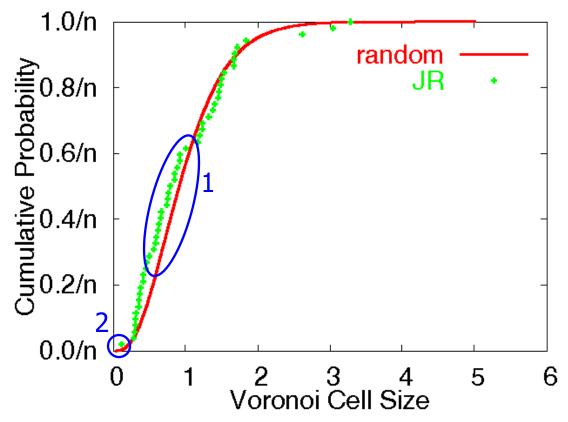


- Existing simulation tools inadequate
  - Lack of scalability to tens of thousands of nodes
  - No middle-ground "proof of concept" tool
- SGNS Simple Geographic Network Simulator
  - Implements GPSR
  - Counts messages only, similar to TAG Simulator
- Simulate on 3 topologies
  - James Reserve (JR) 52 nodes
  - Random placement 2<sup>15</sup> nodes
  - Synthetic JR-based 2<sup>15</sup> nodes



# Synthesizing Topologies




- Trivial random placement is not adequate
  - Humans do not behave randomly!
- First-principles approach to sensor placement
  - Inspired by Li et al. 2004
  - 1. Nodes have two mutually non-exclusive tasks: sensing and routing
    - Areas of higher node densities
  - 2. Humans are rational in sensor placements
    - Minimum inter-nodal distance
  - 3. Sensed environment is not predictable
    - Non-uniformity in placement

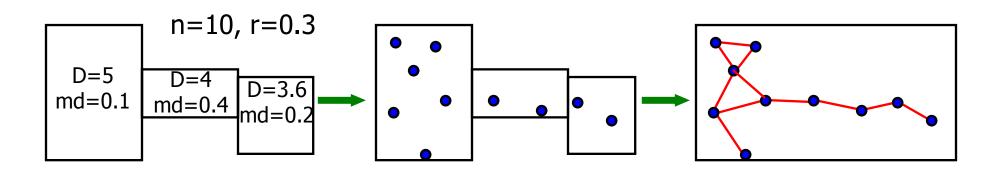


### First Principles in Action



Voronoi cell size distributions: JR vs. random




- Proportionally more nodes with below-average area in JR
- Smallest cells in random topology much smaller: sensors are too close



# **Topology Generator**



STG – Synthetic Topology Generator



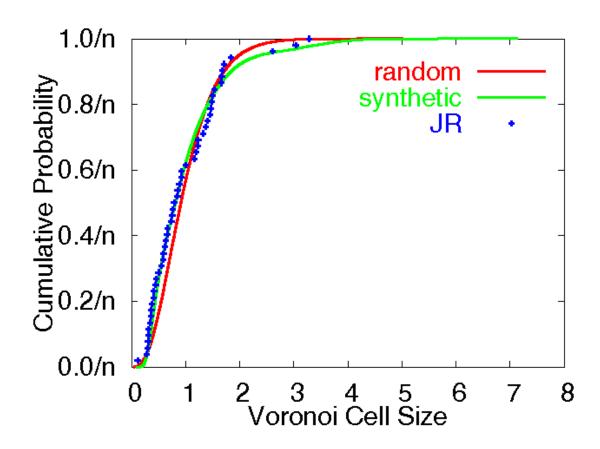
#### Inputs

- Number of nodes and transmission radius
- Set of non-overlapping axis-aligned rectangles
  - Relative node density
  - Minimum inter-nodal distance
- Connectivity requirement
- Iteratively place nodes on the rectangles at random



# Inflating JR topology




- 2<sup>15</sup>-node version of 52-node JR topology
  - 15 Rectangles: JR topology split into 3 × 5 grid
    - Node density maintained by increasing area by 2<sup>15</sup>/52
      - No zero-node rectangles
    - Minimum inter-nodal distance (MID) set to minimal distance between any two nodes in rectangle
      - One-node rectangles: use probabilistically maximal MID < r</li>
  - Require connectivity
- Problem
  - "Scaling" assumption



# Synthetic JR-based topology



#### Voronoi cell size distribution



Looks better than random!



#### Simulation Results



**Computer Science** 

|                                                                 | JR           | random        | synthetic     |
|-----------------------------------------------------------------|--------------|---------------|---------------|
| n                                                               | 52           | 32,768        | 32,768        |
| Dimensions (sq ft)                                              | 2,127x1,306  | 53,341x32,660 | 53,341x32,660 |
| Transmission radius (ft)                                        | 500          | 500           | 500           |
| Number of samples                                               | 80 Million   | 80 Million    | 80 Million    |
| Expected number of probes                                       | 5            | 5             | 5             |
| Total transmissions                                             | 8.74 Billion | 42.38 Billion | 25.24 Billion |
| Transmissions per sample                                        | 109          | 530           | 315           |
| Greedy mode                                                     | 14.190 %     | 67.091 %      | 64.875 %      |
| Perimeter mode                                                  | 1.331 %      | 3.746 %       | 0.008 %       |
| Closest node determination                                      | 84.480 %     | 29.164 %      | 35.117 %      |
| Transmissions per sample (excluding closest node determination) | 17           | 375           | 205           |
| N&G estimated trans. per sample                                 | 78           | 49,152        | 49,152        |

 Large fraction of transmissions is due to closest node determination



#### **Simulation Conclusions**



#### To do list

- Test sampling for data aggregation
  - Compare costs with TAG, FM sketches
- Try inflating Voronoi cells of existing small topologies to obtain large synthetic topologies
  - instead of rectangles
- Simulate "pointers" improvement

#### Wish list

- Node/link loss models for SGNS
- Node mobility in SGNS
- Massive TOSSIM simulation



#### Conclusions



#### New nearly-uniform random sampling algorithm

- Cost proportional to sending a point-to-point message
- Tunable (and generally small) sampling bias
- Proof-of-concept simulations show viability

#### Future Work

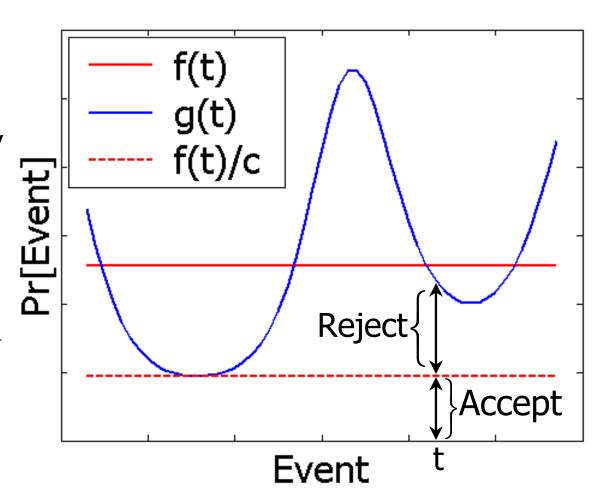
- Extend to non-geographic predicates
- Reduce messaging costs for high number of probes
- Move beyond request/reply paradigm
- Apply to DHTs like Chord (King and Saia, 2004)

### Backup slides



von Neumann's Rejection Method

Geographic Routing

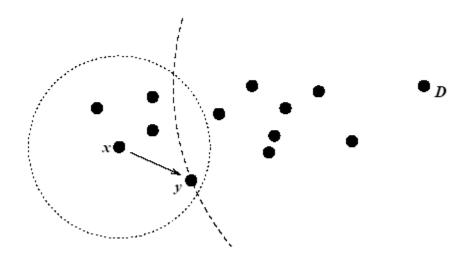



# Rejection Method



#### von Neumann's rejection method (1951)

- Problem: impossible to sample from PDF f
- Idea: Sample indirectly
  from g and scale to f
- Solution: Draw sample t from g, but accept with probability  $\frac{f(t)}{c \cdot g(t)}$  where c is a positive constant



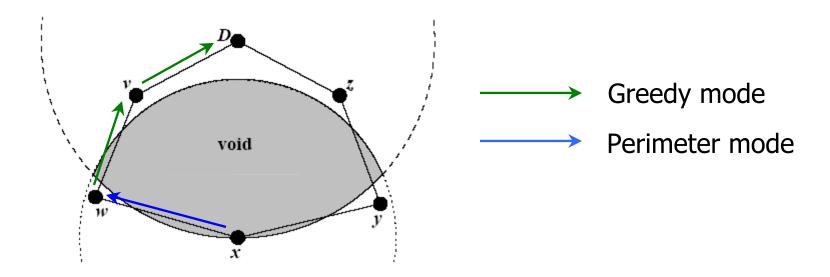



# **Geographic Routing**



- GPSR Greedy Perimeter Stateless Routing (Brad Karp and H.T. Kung, 2000)
  - State limited to neighbor location information
- Greedy mode default protocol state




Forward to neighbor closest to the destination

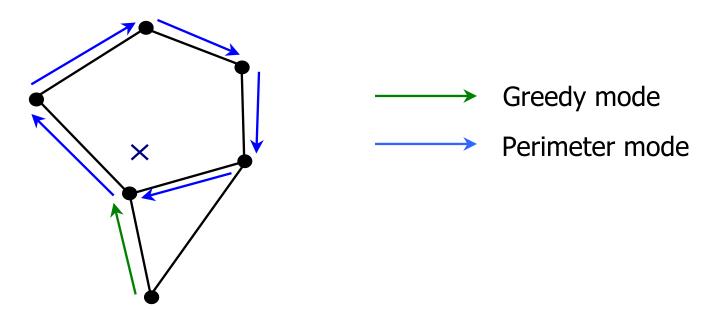


# Geographic Routing (cont.)



Voids – where greedy forwarding fails




- No nodes available in transmission range closer to destination then self
- Perimeter mode circumnavigate voids using the right-hand rule



# Geographic Routing (cont.)



Closest node determination



- Visit every node on a perimeter enclosing probe destination
- Start and finish at the closest node