Characterizing Process Variation

Borislava I. Simidchieva and Leon J. Osterweil

Laboratory for Advanced Software Engineering Research
Department of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003, USA
Introduction

- A process model defines the coordination of agents performing activities using resources and artifacts
- Careful study of the model can help to identify improvements to the real-world process it reflects
- Complex real-world processes exhibit variation
- Such processes may be accommodated better by a family of process models
Approach

- Formally characterize different variation relations
- Reason at two different levels of abstraction
- Strive for improved *generation, analysis, and navigation*

Problem Space
- Driven by the variation needs indicated in the requirements specification
- Representation-independent

Solution Space
- Informed by the strengths and weaknesses of different implementation approaches
- Representation-specific
Approach

- Formally characterize different variation relations
- Reason at two different levels of abstraction
- Strive for improved *generation, analysis, and navigation*

Problem Space

- Functional variation
- Functional invariance
- Goal invariance
- Robustness variation
- Performance variation
- Interaction-based variation
- Agent variation

Solution Space

- Induction
 - Well-formedness constraints
- Structural transformation
- Agent behavior change
- Nominal flow change
- Exceptional flow change
- Agent behavior to process structure
- Process structure to agent behavior

Characterizing Process Variation, Simidchieva and Osterweil

ICSE NIER Track, May 25 2011
Advantages

Explicit modeling of process variation may help with:

1. **Generation** of new variants
 - Creating a new variant based on pre-specified variation relations and known requirements and architecture specifications

2. **Analysis** of an entire process family at once
 - Reasoning about all variants collectively to determine if they meet certain properties in dimensions such as security, privacy, safety and correctness

3. **Navigation** among interrelated software families
 - Identifying which pre-existing variant is most appropriate to use in specific circumstances through navigation through possibly multiple families
Advantages

Explicit modeling of process variation may help with:

1. **Generation** of new variants
 - Creating a new variant based on pre-specified variation relations and known requirements and architecture specifications

2. **Analysis** of an entire process family at once
 - Reasoning about all variants collectively to determine if they meet certain properties in dimensions such as security, privacy, safety and correctness

3. **Navigation** among interrelated software families
 - Identifying which pre-existing variant is most appropriate to use in specific circumstances through navigation through possibly multiple families
Advantages

Explicit modeling of process variation may help with:

1. **Generation** of new variants
 - Creating a new variant based on pre-specified variation relations and known requirements and architecture specifications

Legend:
- Dataflow
- Artifacts
- Generation activities
- Libraries

Process Common Core

Process Goal Specification

Task elaborations library

Coordination Model Generation

Functional Variation Process Variant

Characterizing Process Variation, Simidchieva and Osterweil
Explicit modeling of process variation may help with:

1. **Generation** of new variants
 - Creating a new variant based on pre-specified variation relations and known requirements and architecture specifications
Advantages

Explicit modeling of process variation may help with:

1. **Generation** of new variants
 - Creating a new variant based on pre-specified variation relations and known requirements and architecture specifications

2. **Analysis** of an entire process family at once
 - Reasoning about all variants collectively to determine if they meet certain properties in dimensions such as security, privacy, safety and correctness

3. **Navigation** among interrelated software families
 - Identifying which pre-existing variant is most appropriate to use in specific circumstances through navigation through possibly multiple families
Explicit modeling of process variation may help with:

2. **Analysis** of an entire process family at once
 - Reasoning about all variants collectively to prove safety and correctness properties

![Diagram with symbols and text describing analysis engine and variants.](image-url)
Explicit modeling of process variation may help with:

1. **Generation** of new variants
 - Creating a new variant based on pre-specified variation relations and known requirements and architecture specifications

2. **Analysis** of an entire process family at once
 - Reasoning about all variants collectively to determine if they meet certain properties in dimensions such as security, privacy, safety and correctness

3. **Navigation** among interrelated software families
 - Identifying which pre-existing variant is most appropriate to use in specific circumstances through navigation through possibly multiple families
Advantages

Explicit modeling of process variation may help with:

3. **Navigation** among interrelated software families
 - Identifying which pre-existing variant is most appropriate to use in specific circumstances through navigation through possibly multiple families.

Legend:
- \(\cdot V \) variant
- Process family

Characterizing Process Variation, Simidchieva and Osterweil

ICSE NIER Track, May 25 2011
Advantages

Explicit modeling of process variation may help with:

3. **Navigation** among interrelated software families
 - Identifying which pre-existing variant is most appropriate to use in specific circumstances through navigation through possibly multiple families

Legend:
- **V** variant
- **Process family**

![Diagram](http://www.cs.umass.edu/~bis/)

Characterizing Process Variation, Simidchieva and Osterweil

ICSE NIER Track, May 25 2011
Explicit modeling of process variation may help with:

3. **Navigation** among interrelated software families
 - Identifying which pre-existing variant is most appropriate to use in specific circumstances through navigation through possibly multiple families

Legend:
- \(\cdot V \): variant
- \(\cdot V \): Process family

Diagram:
- **Functional invariance**
- **Performance variation**
- **Service Variation**

Equations:
- \(A \cdot V_i \)
- \(V_k \)
- \(V_j \)
- \(V_m \)
- \(V_n \)

References:
- Characterizing Process Variation, Simidchieva and Osterweil
- ICSE NIER Track, May 25 2011
Future Work

- How is variation rigorously and precisely defined?
- Do these dimensions afford for observed variation?
- How can families based on different variation relations be composed together safely?
- How would composition and intersection affect reasoning?
- How does process variation differ from product variation?
- What kind of tool support would make such a conceptual framework useful?
Conclusion

- Variation is inherent in real-world systems
- Being precise about different variation needs can lead to a taxonomy of different variation dimensions
- A disciplined way to model variation explicitly has the benefits of improved generation, analysis, navigation