Machine Learning with Spike-Timing-Dependent Plasticity
References
- G. H. Y. LeCun, Y. Bengio, “Deep learning,” Nature, no. 521, pp. 436–444, May 2015.
- S. W. Lee, J. P. ODoherty, and S. Shimojo, “Neural Computations Mediating One-Shot Learning in the Human Brain,” PLOS Biology, vol. 13, no. 4, p. e1002137, Apr. 2015. [Online]. Available: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002137
- W. Maass, “Lower Bounds for the Computational Power of Networks of Spiking Neurons,” Neural Computation, vol. 8, no. 1, pp. 1–40, Jan. 1996. [Online]. Available: https://doi.org/10.1162/neco.1996.8.1.1
- ——, “Networks of spiking neurons: The third generation of neural network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, Dec. 1997. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0893608097000117
- M. C. P. U. Diehl, “Unsupervised learning of digit recognition using spike-timing-dependent plasticity,” Frontiers in Computational Neuroscience, Aug. 2015.
- Y. B. Y. LeCun, L. Bottou and P. Haffner, “Gradient-based learning applied to document recognition.” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.
- D. Liu and S. Yue, “Fast unsupervised learning for visual pattern recognition using spike timing dependent plasticity,” Neurocomputing, vol. 249, pp. 212–224, Aug. 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231217306276
- S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “STDP-based spiking deep convolutional neural networks for object recognition,” arXiv:1611.01421 [cs], Nov. 2016, arXiv: 1611.01421. [Online]. Available: http://arxiv.org/abs/1611.01421
- P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeiffer, “Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN), Jul. 2015, pp. 1–8.
- W. M. K. W. Gerstner, Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press, 2002.
- G.-q. Bi and M.-m. Poo, “Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type,” Journal of Neuroscience, vol. 18, no. 24, pp. 10 464–10 472, 1998. [Online]. Available: http://www.jneurosci.org/content/18/24/10464
- R. B. D. F. M. Goodman, “The Brian simulator,” Frontiers in Computational Neuroscience, Sep. 2009.
- D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Backpropagation,” Y. Chauvin and D. E. Rumelhart, Eds. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1995, pp. 1–34. [Online]. Available: http://dl.acm.org/citation.cfm?id=201784.201785
|