Computation in Gene Networks

Asa Ben-Hur! and Hava T. Siegelmann?
! BioWulf Technologies
2030 Addison st. suite 102, Berkeley, CA 94704
2 Lab for Inf. & Decision Systems
MIT Cambridge, MA 02139, USA

iehava@ie.technion.ac.il

Abstract. We present a biological computing paradigm that is based on
genetic regulatory networks. Using a model of gene expression by piece-
wise linear differential equations we show that the evolution of protein
concentrations in a cell can be considered as a process of computation.
This is demonstrated by showing that this model can simulate mem-
ory bounded Turing machines. The simulation is robust with respect
to perturbations of the system, an important property for both analog
computers and biological systems.

1 Introduction

In recent years scientists have been looking for new paradigms for constructing
computational devices. These include quantum computation [1], DNA compu-
tation [2], neural networks [3], neuromorphic engineering [4] and other analog
VLSI devices. This paper describes a new paradigm based on genetic regulatory
networks. The concept of a “genetic network” refers to the complex network of
interactions between genes and gene products in a cell [5]. Since the 60’s genetic
regulatory systems are thought of as “circuits” or “networks” of interacting com-
ponents [6], and were described in computer science terms: The genetic material
is the “program” that guides protein production in a cell; protein levels deter-
mine the evolution of the network at subsequent times, and thus serve as its
“memory”. This analogy between computing and the process of gene expression
was pointed out in various papers [7)§]. Bray suggests that protein based circuits
are the device by which unicellular organisms react to their environment, instead
of a nervous system [7]. However, until recently this was only a useful metaphor
for describing gene networks. The papers [9]10] describe the successful fabrica-
tion of synthetic networks, i.e. programming of a gene network. In this paper
we compare the power of this computational paradigm with the standard digital
model of computation. In a related series of papers it is shown both theoretically
and experimentally that chemical reactions can be used to implement Boolean
logic and neural networks (see [I1] and references therein).

Protein concentrations are continuous variables that evolve continuously in
time. Moreover, biological systems do not have timing devices, so a description in
terms of a map that simultaneously updates the system variables is inadequate. It

M. Margenstern and Y. Rogozhin (Eds.): MCU 2001, LNCS 2055, pp. 11-24] 2001.
© Springer-Verlag Berlin Heidelberg 2001

12 Asa Ben-Hur and Hava T. Siegelmann

is thus necessary to model gene networks by differential equations, and consider
them as analog computers. The particular model of genetic networks we analyze
here assumes switch-like behavior, so that protein concentrations are described
by piecewise linear equations (see equation ([Il) below) [12J§], but we believe our
results to hold for models that assume sigmoid response (see discussion). These
equations were originally proposed as models of chemical oscillations in biological
systems [13]. In this paper we make the analogy between gene networks and
computational models complete by formulating an abstract computational device
on the basis of these equations, and showing that this analog model can simulate
a computation of a Turing machine [I4]. The relation between digital models of
computation and analog models is explored in a recent book [15], mainly from
the perspective of neural networks. It is shown there that analog models are
potentially stronger than digital ones, assuming an ideal noiseless environment.
In this paper on the other hand we consider the possibility of noise and propose a
design principle which makes the model equations robust. This comes at a price:
we can only simulate memory bounded Turing machines. However, we argue that
any physically realizable robust simulation has this drawback. On the subject
of computation in a noisy environment see also [I6/17]. We found that the gene
network proposed in [9] follows this principle, and we quote from that paper
their statement that “theoretical design of complex and practical gene networks
is a realistic and achievable goal”.

Computation with biological hardware is also the issue in the field of DNA
computation [2]. As a particular example, the guided homologous recombination
that takes place during gene rearrangement in ciliates was interpreted as a pro-
cess of computation [1§]. This process, and DNA computation in general, are
symbolic, and describe computation at the molecular level, whereas gene net-
works are analog representations of the macroscopic evolution of protein levels
in a cell.

2 Piecewise Linear ODEs for Gene Networks

In this section we present model equations for gene networks, and note a few
of their dynamical properties [T9]. The concentration of N proteins (or other
biochemicals in a more general context) is given by N non-negative real variables
Y1,---,YN. Let 01,...,0y be N threshold concentrations. The production rate
of each protein is assumed to be constant until a threshold is crossed, when the
production rate assumes a new value. This is expressed by the equations:

dy;

= —kyi + A4(Y1, ..., Y 1
dt kzyz+ z(1) N)a ()

where Y; is a Boolean variable associated with y;, equal to 1 if y; > 6; and 0
otherwise; k; is the degradation rate of protein ¢ and A; is its production rate
when gene i is “on”. These equations are a special case of the model of Mestl et.
al. [I2] where each protein can have a number of thresholds, compared with just
one threshold here (see also [20]). When there is just one threshold it is easy to

Computation in Gene Networks 13

associate Boolean values with the continuous variables. For simplicity we take
k; = 1, and define
z; =y — 0i,

with the associated Boolean variables

X; = sgn(x;),
where sgn(x) = 1 for x > 0 and zero otherwise. Also denote A;(Xy,...,Xy) =
A;(Y1,...,YN) — 6;. Equation () now becomes:
dCCZ‘
dt Z—JZi—FAi(Xl,...,XN), (2)

and A; is called the truth table. The set in IR™ which corresponds to a particular
value of a Boolean vector X = (Xq,...,Xy) is an orthant of RY. By abuse
of notation, an orthant of IR will be denoted by a Boolean vector X. The
trajectories in an orthant are straight lines directed to a focal point A(X) =
(A1(X),..., AN (X)), as seen from equation (B]) below. If the focal point A(X) at
apoint x = (x1,...,2y) is in the same orthant as x, then the dynamics converges
to the focal point. Otherwise it crosses the boundary to another orthant, where
it is redirected to a different focal point. The sequence of orthants X (1), X (2),...
that correspond to a trajectory x(t) is called the symbolic dynamics of the vector
field. In the next sections we will associate the symbolic dynamics of a a model
Gene Network (GN) with a process of computation.

2.1 Dynamics

In an orthant all the A; are constant, and the equations (@) are easily integrated.
Starting from a point z(0),

zi(t) = A + (z:(0) = Ay)e ™", (3)

where A\; = 4;(X1(0),..., Xn(0)). The time ¢; at which the hyper-plane z; =0
is crossed is given by

The switching time ¢ is the time it takes to reach a new orthant:
ts = mint;
K3

We will consider networks with A; = 41 in all orthants. Thus when the focal
point is in a different orthant than 2:(0) we have that

t, <In2. (4)

This gives a criterion for determining whether a GN is converging to a fixed point:
if the time from the last switching time is larger than In 2, then the system is
converging to the current focal point.

14 Asa Ben-Hur and Hava T. Siegelmann

X2

//\ X1

Fig. 1. A piecewise linear flow in two dimensions.

A network as in (@) is a continuous time version of a discrete network:
Zi = sgn(44(2)) ()

where Z € {0,1}" is a vector of Boolean variables. This dynamics does not
necessarily visit the same sequence of orthants as the corresponding continuous
network.

We want to simulate a discrete dynamical system (Turing machine) with a
continuous time GN. To bridge the gap, we first construct a discrete gene network
of the form (B), whose corresponding continuous GN has the same symbolic
dynamics. We will use truth tables with the following property:

Definition 1. Two orthants are said to be adjacent if they differ in exactly one
coordinate. A truth table A will be called adjacent if A(X) is in the same orthant
as X or in an adjacent orthant to X for all z € RN . A network with an adjacent
truth table will also be called adjacent.

We note that in an adjacent network, all initial conditions in an orthant lead
to the same adjacent orthant. Therefore all initial conditions of (2]) in the same
orthant have the same symbolic dynamics. An immediate result is the following
lemma:

Lemma 1. Let A be an adjacent truth table, then the symbolic dynamics of
a continuous GN is the same as the dynamics of its discrete counterpart [3):
X(k)=Z(k), k=0,1,..., where Z(k) is the kth iterate of (8) and X (k) is the
kth orthant visited by [8), for every initial condition of {2) corresponding to Zy.

Computation in Gene Networks 15

In view of the above discussion, the focal points and the initial condition of
an adjacent network can be taken as points in {—1,1}", and the problem of
constructing a continuous network that simulates a discrete dynamics is reduced
to the problem of constructing a discrete network that changes only one variable
at each iteration.

When the truth table is not adjacent, a discrete network may show qual-
itatively different dynamics than its continuous counterpart: continuous high-
dimensional GN’s are “typically” chaotic [21122]. However chaos is a dynamical
behavior that is impossible in dynamical systems with a finite state space. The
lack of sensitivity of the dynamics of an adjacent GN to the placement of the
initial condition, and its equivalence to a discrete network leads to the following
statement:

Corollary 1. Adjacent networks are not chaotic.

This implies a measure of stability to the dynamics of adjacent networks. Lack of
sensitivity to perturbations of the system is captured by the following property
of adjacent networks:

Claim. Let A be an adjacent truth table, and let A be a truth table whose entries
are A;(X) + 0;(X), where §;(X) € [—c,¢] for some 1 > ¢ > 0. Then A is also
adjacent, and the two networks have the same symbolic dynamics.

The robustness of adjacent networks is an important property for both analog
computers and biological systems. The robustness of biological systems leads us
to speculate that adjacency might be a principle underlying the robust behavior
in the modeled systems. Adjacency can also be taken as a principle which can
be used in the design of robust networks.

3 Preliminaries

In this section we give the definition of the Turing machine that will be simulated
and provide the relevant concepts from complexity theory [T4].

Definition 2. A Turing machine is a tuple M = (K, X, I,0,Q1,Qq). K =
{Q1,...,Qq} is a finite set of states; Q1,Q4 € K are the initial/halting states
respectively; X is the input alphabet; I' = X' U {blank, #} is the tape alphabet
which includes the blank symbol and the left end symbol, #, which marks the
end of the tape; 6 : K x I' - K x X x {L, R} is the transition function, and
L/R signify left/right movement of the read-write head. The transition function
18 such that it cannot proceed left of the left end marker, and does not erase it,
and every tape square is blank until visited by the read-write head.

At the beginning of a computation an input sequence is written on the tape
starting from the square to the right of the left-end marker. The head is located
at the leftmost symbol of the input string, and the finite-control is initialized at
its start state Q1. The computation then proceeds according to the transition
function, until reaching the halting state. Without loss of generality we suppose

16 Asa Ben-Hur and Hava T. Siegelmann

that the input alphabet, X, is {0,1}. We say that a Turing machine accepts an
input word w if the computation on input w reaches the halting state with “1”
written on the tape square immediately to the right of the left-end marker. If
the machine halts with “0” at the first tape square, then the input is rejected by
the machine. Other conventions of acceptance are also common. The language
of a Turing machine M is the set L(M) of strings accepted by M.

Languages can be classified by the computational resources required by a
Turing machine which accepts them. The classification can be according to time
or space (memory). The time complexity of a computation is the number of
steps until halting and its space complexity is the number of tape squares used
in the computation. The complexity classes P and PSPACE are defined to be
the classes of languages that are accepted in polynomial time and polynomial
space, respectively. More formally, a language L is in PSPACE if there exists
a Turing machine M which accepts L, and there exists ¢ > 0 such that on all
inputs of length n M accesses O(n¢) tape squares. To make a finer division one
defines the class SPACE(s(n)) of languages that are accepted in space s(n).

3.1 On the Feasibility of Turing Machine Simulation

Turing machine simulations by differential equations appear in a number of pa-
pers: in [23] it was shown that an ODE in four dimensions can simulate a Turing
machine, but the explicit form of the ODE is not provided. Finite automata
and Turing machines are simulated in [24] by piecewise constant ODEs. Their
method is related to the one used here.

A Turing machine has a countably infinite number of configurations. In order
to simulate it by an ODE, an encoding of these configurations is required. These
can essentially be encoded into a continuum in two ways:

— in a bounded set, and two configurations can have encodings that are arbi-
trarily close;
— in an unbounded set, keeping a minimal distance between encodings.

In the first possibility, arbitrarily small noise in the initial condition of the sim-
ulating system may lead to erroneous results, and is therefore unfeasible (this
point is discussed in [25] in the context of simulating a Turing machine by a map
in]RQ). The second option is also unfeasible since a physical realization must be
finite in its extent. Thus simulation of an arbitrary Turing by a realizable analog
machine is not possible, and simulation of resource bounded Turing machines is
required. In this chapter we will show a robust simulation of memory bounded
Turing machines by adjacent GN’s.

4 Computing with GN’s

In this section we formulate GN’s as computational machines. The properties of
adjacent networks suggest a natural interpretation of an orthant X as a robust
representation of a discrete configuration. The symbolic dynamics of a network,

Computation in Gene Networks 17

i.e. the values X (t) will be interpreted as a series of configurations of a discrete
computational device.

Next we specify how it receives input and produces an output. A subset of
the variables will contain the input as part of the initial condition of the network,
and the rest of the variables will be initialized in some uniform way. Since we
are considering X' = {0, 1}, the input is encoded into the binary values X (0). To
specify a specific point in the orthant X we choose -1 to correspond to 0 and 1 to
correspond to 1. Note that for adjacent networks any value of 2(0) corresponding
to X (0) leads to the same computation, so this choice is arbitrary.

In addition to input variables, another subset of the variables is used as out-
put variables. For the purpose of language accepting a single output variable is
sufficient. There are various ways of specifying halting. One may use a dynam-
ical property, namely convergence to a fixed point, as a halting criterion. We
noted that convergence to a fixed point is identified when after a time In2 no
switching has occurred (see equation (). Non-converging dynamics correspond
to non-halting computations. While such a definition is natural from a dynamics
point of view, it is not biologically plausible, since a cell evolves continuously,
and convergence to a fixed point has the meaning of death. Another approach
is to set aside a variable that will signify halting. Let this variable be Xy. It
is initially set to 0, and when it changes to 1, the computation is complete,
and the output may be read from the output variables. In this case non-halting
computations are trajectories in which Xy never assumes the value 1. After Xy
has reached the value 1, it may be set to 0, and a new computational cycle may
begin. A formal definition of a GN as a computational machine is as follows.

Definition 3. A genetic network is a tuple G = (V, 1,0, A, xo, Xn), where V is
the set of variables indexed by {1,....N}; ICV,|I[|=nand O CV, |O]=m
are the set of input and output variables respectively; A: {0, 1}N — {—1,1}V is
a truth table for a flow [@); xo € {—1,1}N~" is the initialization of variables in
V\I. Xy is the halting variable that is initialized to 0. A computation is halted
the first time that Xy = 1.

A GN G with n input variables and m output variables computes a partial
mapping
fe:{0,1}" = {0,1}™,

which is the value of X; for i € O when the halting state Xy = 1 is reached. If
on input w the net does not reach a halting state then fg(w) is undefined.

We wish to characterize the languages accepted by GN’s. For this purpose
it is enough to consider networks with a single output variable, and say that a
GN G accepts input w € {0,1}* if fg(w) = 1. A fixed network has a constant
number of input variables. Therefore it can only accept languages of the form

L,=Ln{0,1}", (6)

where L C {0, 1}*. To accept a language which contains strings of various lengths
we consider a family {G,,}5°; of networks, and say that such a family accepts a
language L if for all n, L(G,,) = L.

18 Asa Ben-Hur and Hava T. Siegelmann

Before we define the complexity classes of GN’s we need to introduce the ad-
ditional concept of uniformity. A GN with N variables is specified by the entries
of its truth table A. This table contains the 2%V focal points of the system. Thus
the encoding of a general GN requires an exponential amount of information.
In principle one can use this exponential amount of information to encode every
language of the form L N {0,1}", and thus a series of networks exists for every
language L C {0, 1}*. Turing machines on the other hand, accept only the subset
of recursive languages [14]. A Turing machine is finitely specified, essentially by
its transition function, whereas the encoding of an infinite series of networks is
not necessarily finite. To obtain a series of networks that is equivalent to a Turing
machine it is necessary to impose the constraint that truth tables of the series
of networks should all be created by one finitely encoded machine. The device
which computes the truth table must be simple in order to demonstrate that
the computational power of the network is not a by-product of the computing
machine that generates its transition function, but of the complexity of its time
evolution. We will use a finite automaton with output [26], which is equivalent to
a Turing machine which uses constant space. The initial condition of the series
of networks needs also to be computable in a uniform way, in the same way as
the truth table, since it can be considered as “advice”, as in the model of advice
Turing machines [I4]. We now define:

Definition 4. A family of networks {G,}52, is called uniform if there exist
constant memory Turing machines My, My that compute the truth table and
initial condition as follows: on input X € {0,1}™ My outputs A(X); My outputs
xo for G, on input 1™ ..

With the definition of uniformity we can define complexity classes. Given a
function s(n), we define the class of languages which are accepted by networks
with less than s(n) variables (not including the input variables):

GN(s(n)) = {L C {0,1}* |there exists a uniform family of networks
{Gn}2,, st. L(G,) = L, and N < s(n) +n}

The class with polynomial s(n) will be denoted by PGN. The classes Adjacent-
GN(s(n)) and Adjacent-PGN of adjacent networks are similarly defined. Time
constrained classes can also be defined.

5 The Computational Power of GN’s

In this section we outline the equivalence between memory-bounded Turing ma-
chines and networks with adjacent truth tables. We begin with the following
lemma:

Lemma 2. Adjacent-GN(s(n)) C SPACE(s(n)).

Proof. Let L € Adjacent-GN(s(n)). There exists a family of adjacent GN’s,
{G, Y52, with truth tables A such that L(G,) = L,, and constant memory

Computation in Gene Networks 19

Turing machines My, My that compute A and x,. Since A™ is an adjacent
truth table, and we are only interested in its symbolic dynamics, we can use
the corresponding discrete network. The Turing machine M’ for L will run M;
to obtain the initial condition, and then run Ms> to generate the iterates of the
discrete network. M’ will halt when the network has reached a fixed point. The
network G,, has s(n) variables on inputs of length n, therefore the simulation
requires at least that much memory. It is straightforward to verify that O(s(n))
space is also sufficient.

The Turing machine simulation in the next section shows:

Lemma 3. Let M be a Turing machine working in space s(n), then there exists
a sequence of uniform networks {G,}2, with s(n) variables such that L(G,,) =
L(M)Nn{0,1}™.

We conclude:
Theorem 1. Adjacent-GN(s(n))=SPACE(s(n)).

As a result of claim 2] we can state that adjacent networks compute robustly.
This is unlike the case of dynamical systems which simulate arbitrary Turing
machines, where arbitrarily small perturbations of a computation can corrupt the
result of a computation (see e.g. [24127/15]). The simulation of memory bounded
machines is what makes the system robust. The above theorem gives only a lower
bound on the computational power of the general class of GN’s, i.e.:

Corollary 2. SPACE(s(n)) C GN(s(n)).

One can obtain non-uniform computational classes in two ways, either by allow-
ing advice to appear as part of the initial condition, or by using a weaker type
of uniformity for the truth table. This way one can obtain an equivalence with
a class of the type PSPACE/poly [14].

6 Turing Simulation by GN’s

Since the discrete and continuous networks associated with an adjacent truth
table have the same symbolic dynamics, it is enough to describe the dynamics of
an adjacent discrete network. We show how to simulate a space bounded Turing
machine by a discrete network whose variables represent the tape contents, state
and head position. An adjacent map updates a single variable at a time. To
simulate a general Turing machine by such a map each computational step is
broken into a number of operations: updating the tape contents, moving the
head, and updating the state; these steps are in turn broken into steps that can
be performed by single bit updates.

Let M be a Turing machine that on inputs of length n uses space s. With-
out loss of generality we suppose that the alphabet of the Turing machine is
Y = {0,1}. To encode the three symbols {0, 1,blank} by binary variables we
use a pair of variables for each symbol. The first variable of the pair is zero

20 Asa Ben-Hur and Hava T. Siegelmann

iff the corresponding tape position is blank; “0” is encoded as “10” and “1” is
encoded as “11”. Note that the left end marker symbol need not be encoded
since the variables of the network have numbers. We construct a network G
with variables Yi,...,Ys; By,...,Bs; P1, ..., Ps;Q1,...,Qq and auxiliary vari-
ables B,Y,Q1,...,Q;,C1,...,Cy. The variables

Yla"w}/s;Bh"wBs

store the contents of the tape: B; indicates whether the square ¢ of the tape
is blank or not and Y; is the binary value of a non-blank square. The input
is encoded into the variables Y7,...,Y,, B1,..., B,. Since the Turing machine
signifies acceptance of an input by the value of its left-most tape square, we take
the output to be the value of Y;. The position of the read-write head is indicated
by the variables

P,..., P

If the head is at position i then P; = 1 and the rest are zero. The state of the
machine will be encoded in the variables

Qla"'qu

where @); is the initial state and @), is the halting state of the machine. State i
will be encoded by @; = 1 and the rest zero.

As mentioned above, a computation of the Turing machine is broken into a
number of single bit updates. After updating variables related to the state or the
symbol at the head position, information required to complete the computation
step is altered. Therefore we need the following temporary variables

— Y ,B - the current symbol

- Qf,...,Qy - a copy of the current state variables.

A computation step of the Turing machine is simulated in four stages:

1. Update the auxiliary variables Y, B,Qf,...,Q; with the information re-
quired for the current computation step;

2. Update the tape contents;

3. Move the head;

4. Update the state.

We keep track of the stage at which the simulation is at with a set of variables
C4,...,Cy which evolve on a cycle which corresponds to the cycle of operations
(1)-(4) above. Each state of the cycle is associated with an update of a single
variable. After a variable is updated the cycle advances to its next state. However,
since a variable update does not always change the value of a variable, e.g. the
machine does not have to change the symbol at the head position, and since the
GN needs to advance to a nearby orthant or else it enters into a fixed point each
update is of the form:

If the variable pointed to by the cycle
subnetwork needs updating - update it
else
advance to the next state of the cycle

Computation in Gene Networks 21

Suppose that the head of M is at position ¢ and state j, and that in the current
step Y; is changed to value Yﬁ' which is a non-blank, the state is changed to state
k, and the head is moved to position i + 1. The sequence of variable updates
with the corresponding cycle states is as follows:

cycle state variable update
0000 Y <«Y;
0001 B <+ B;

0011 Q; +—1

0111 Y; «+ Yf update variable at head
0110 B; <+1 Yf non-blank

1110 Py« 1 new position of head
1111 P, +0 erase old position of head
1011 Qr <1 new state

1001 Q; <«0 erase old state

1000 ; 0 prepare for next cycle

At the end of a cycle a new cycle is initiated.
On input w = wyws ... w,, w; € {0,1} the system is initialized as follows:

Y; = wi, t=1,...,8
B; = 1,i=1,...,s
P = 1
Q1 = 1

all other variables: 0

This completes the definition of the network. The computation of the initial
condition is trivial, and computing the truth table of this network is essentially a
bit by bit computation of the next configuration of the simulated Turing machine,
which can be carried out in constant space. The network we have defined has
O(s) variables, and each computation step is simulated by no more than 20 steps
of the discrete network. O

Remark 1. It was pointed out that the Hopfield neural network is related to
GN’s [28]. Theorem [l can be proved using complexity results about asymmetric
and Hopfield networks found in [29130]. However, in this case it is harder to
define uniformity, and the direct approach taken here is simpler.

7 Language Recognition vs. Language Generation

The subclass of GN’s with adjacent truth-tables has relatively simple dynamics
whose attractors are fixed points or limit cycles. It is still unknown whether non-
adjacent GN’s are computationally stronger than adjacent GN’s. General GN’s
can have chaotic dynamics, which are harder to simulate with Turing machines.
We have considered GN’s as language recognizers: where the input arrives at
the beginning of a computation, and the decision to accept or reject is based on
its state when a halting state is reached. In the context of language recognition,

22 Asa Ben-Hur and Hava T. Siegelmann

chaotic dynamics does not add computational power: given a chaotic system that
accepts a language, there is a corresponding system that does not have a chaotic
attractor for inputs on which the machine halts; such a system is obtained e.g., by
defining the halting states as fixed points. However, one can also consider GN’s
as language generators by viewing the symbolic dynamics of these systems as
generating strings of some language. In this case a single GN can generate strings
of arbitrary length. But even in this case chaos is probably not very “useful”,
since the generative power of structurally stable chaotic systems is restricted to
the simple class of regular languages [31]. More complex behavior can be found
in dynamical systems at the onset of chaos (see [3233]). Continuously changing
the truth table can lead to a transition to chaotic behavior [34]. At the transition
point complex symbolic dynamics can be expected, behavior which is not found
in discrete Boolean networks.

8 Discussion

In this paper we formulated a computational interpretation of the dynamics
of a switch-like ODE model of gene networks. We have shown that such an
ODE can simulate memory bounded Turing machines. While in many cases
such a model provides an adequate description, more realistic models assume
sigmoidal response. In the neural network literature it is proven that sigmoidal
networks with a sufficiently steep sigmoid can simulate the dynamics of switch-
like networks [I5/35]. This suggests that the results presented here carry over to
sigmoidal networks as well.

The property of adjacency was introduced in order to reduce a continuous
gene network to a discrete one. We consider it as more than a trick, but rather as
a strategy for fault tolerant programming of gene networks. In fact, the genetic
toggle switch constructed in [9] has this property. However, when it comes to
non-synthetic networks, this may not be the case - nature might have other ways
of programming them, which are not so transparent.

References

1. M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

2. L. Kari. DNA computing: the arrival of biological mathematics. The mathematical
intelligencer, 19(2):24-40, 1997.

3. J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Compu-
tation. Addison-Wesley, Redwood City, 1991.

4. C. Mead. Analog VLSI and Neural Systems. Addison-Wesley, 1989.

5. H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell.
Molecular cell biology. W.H. Freemand and Company, 4th edition, 2000.

6. S.A. Kauffman. Metabolic stability and epigenesis in randomly connected nets.
Journal of Theoretical Biology, 22:437, 1969.

7. D. Bray. Protein molecules as computational elements in living cells. Nature,
376:307-312, July 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Computation in Gene Networks 23

H.H. McAdams and A. Arkin. Simulation of prokaryotic genetic circuits. Annual
Review of Biophysics and Biomolecular Structure, 27:199-224, 1998.

T.S. Gardner, C.R. Cantor, and J.J. Collins. Construction of a genetic toggle
switch in E. coli. Nature, 403:339-342, January 2000.

M.B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional
regulators. Nature, 403:335—-338, January 2000.

A. Arkin and J. Ross. Computational functions in biochemical reaction networks.
Biophysical Journal, 67:560-578, 1994.

T. Mestl, E. Plahte, and S.W. Omholt. A mathematical framework for describing
and analyzing gene regulatory networks. Journal of Theoretical Biology, 176:291—
300, 1995.

L. Glass. Combinatorial and topological method in chemical kinetics. Journal of
Chemical Physics, 63:1325-1335, 1975.

C. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, Mass.,
1995.

H.T. Siegelmann. Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhauser, Boston, 1999.

H.T. Siegelmann, A. Roitershtein, and A. Ben-Hur. Noisy neural networks and
generalizations. In Proceedings of the Annual Conference on Neural Information
Processing Systems 1999 (NIPS*99). MIT Press, 2000.

W. Maass and P. Orponen. On the effect of analog noise in discrete time compu-
tation. Neural Computation, 10(5):1071-1095, 1998.

L.F. Landweber and L. Kari. The evolution of cellular computing: nature’s solution
to a computational problem. In Proceedings of the 4th DIMACS meeting on DNA
based computers, pages 3—15, 1998.

L. Glass and J.S. Pasternack. Stable oscillations in mathematical models of bio-
logical control systems. Journal of Mathematical Biology, 6:207—223, 1978.

R.N. Tchuraev. A new method fo rthe analysis of the dynamics of the molecu-
lar genetic control systems. 1. description of the method of generalized threshold
models. Journal of Theoretical Biology, 151:71-87, 1991.

T. Mestl, R.J. Bagley, and L. Glass. Common chaos in arbitrarily complex feedback
networks. Physical Review Letters, 79(4):653-656, 1997.

L. Glass and C. Hill. Ordered and disordered dynamics in random networks.
Europhysics Letters, 41(6):599-604, 1998.

M.S. Branicky. Analog computation with continuous ODEs. In Proceedings of the
IEEE Workshop on Physics and Computation, pages 265274, Dallas, TX, 1994.
E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems
with piecewise-constant derivatives. Theoretical Computer Science, 138:35-66,
1995.

A. Saito and K. Kaneko. Geometry of undecidable systems. Prog. Theor. Phys.,
99:885-890, 1998.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

P. Koiran and C. Moore. Closed-form analytic maps in one and two dimensions can
simulate universal Turing machines. Theoretical Computer Science, 210:217-223,
1999.

J.E. Lewis and L. Glass. Nonlinear dynamics and symbolic dynamics of neural
networks. Neural Computation, 4:621-642, 1992.

P. Orponen. The computational power of discrete hopfield nets with hidden units.
Neural Computation, 8:403-415, 1996.

24

30

31.

32.

33.

34.

35.

Asa Ben-Hur and Hava T. Siegelmann

P. Orponen. Computing with truly asynchronous threshold logic networks. Theo-
retical Computer Science, 174:97-121, 1997.

C. Moore. Generalized one-sided shifts and maps of the interval. Nonlinearity,
4:727-745, 1991.

J.P. Crutchfield and K. Young. Computation at the onset of chaos. In W.H.
Zurek, editor, Complexity, Entropy and the Physics of Information, pages 223—
269, Redwood City, CA, 1990. Addison-Wesley.

C. Moore. Queues, stacks, and transcendentality at the transition to chaos. Physica
D, 135:24-40, 2000.

R. Edwards, H.T. Siegelmann, K. Aziza, and L. Glass. Symbolic dynamics and
computation in model gene networks. in preparation.

J. Sima and P. Orponen. A continuous-time hopfield net simulation of discrete
neural networks. Technical Report 773, Academy of Sciences of the Czech Republic,
1999.

	1 Introduction
	2 Piecewise Linear ODEs for Gene Networks
	2.1 Dynamics

	3 Preliminaries
	3.1 On the Feasibility of Turing Machine Simulation

	4 Computing with GN's
	5 The Computational Power of GN's
	6 Turing Simulation by GN's
	7 Language Recognition vs. Language Generation
	8 Discussion
	References

