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1 Introduction

Our interest is in computers called artificial neural networks. These consist of
assemblies of simple processors, or “neurons”, each of which computes a scalar
activation function of its input. The scalar value produced by a neuron is, in turn,
broadcast to the successive neurons involved in a given computation. Some of the
signals originate from outside the network and act as inputs to the entire system,
while some of the output signals are communicated back to the environment and
are thus used to encode the end result of the computation. These networks can
be thought of either as functional units or as reactive systems, as they are able to
both approximate input-output mappings and adapt to new environments. The
networks are thus of great use as automatic learning tools and as adaptive and
optimal controllers, e.g. in applications to vision, speech processing, robotics, sig-
nal processing, and many other fields (see [16],[45],[27],[38]). Herein we perceive
neural nets as abstract functional devices able to perform exact computations
rather than approximations only.

To achieve a rich and uniform computational model one must allow the sys-
tem to evolve for a flexible amount of time by incorporating memory into the
computation, this is not always the case in the neural architectures. In broad
terms, one may classify neural networks according to their architecture, into
feedforward and recurrent (or feedback) nets. The former are arranged in mul-
tiple layers, in such a manner that the input of each layer is provided by the
output of the preceding one. Thus, the interconnection graph is acyclic, and
the response time to an external input cannot be greater than the number of
layers, independent of the length of the input. Feedforward networks are useful
for representation, interpolation, and approximation of functions and stationary
time series (see, e.g., [4, 5, 7, 11, 19, 20, 26, 48, 47, 46]), but because their
computation ends in a fixed number of steps, one such network cannot perform
general computations for inputs of varying lengths. Feedback networks, in con-
trast, allow loops in their graphs, and thus memory of past events is possible;
this property facilitates a more compact and general representation of time series
(see, e.g. [46]). These networks can be considered a rich computational model.

Most of traditional work on the computational power and capabilities of
recurrent neural networks has focused on networks of infinite size (e.g., [15,
12, 13, 17, 52, 30]). Because these models contain an unbounded number of
neurons, however, they cannot really explain the true power of their networks.
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They provide not only infinite memory (a fair resource), but they become infinite
automata. Perhaps it is more appropriate to consider computational models
which include a finite number of neurons, but still allow for growing memory by
allowing, for example, for growing precision in the neurons; this is the basis of the
current work. The first computational model that combined a finite number of
neurons and infinite precision was introduced by Pollack [37]. Each neuron in his
model computed a second-order polynomial or the threshold function; his model
did not allow for first-order polynomials, as is common in neural networks, nor
did it allow for any continuous activation function. We rather view continuity
as an important requirement for the modeling of analog physical systems with
neural networks. (It is hard to imagine many natural systems where any two
arbitrary close numbers can be well discerned, as they are by the threshold
function.) We thus choose to build on the model described in the following
subsection.

1.1 Deterministic Analog Recurrent Networks

Several recent papers have considered the nature of deterministic analog (con-
tinuous) recurrent neural networks (e.g., [41, 43, 42, 25, 22, 28, 14, 44]). These
consist of a finite number of neurons. The activation value, or state, of each
neuron is updated at times t = 1, 2, 3, . . . , according to a function of the acti-
vations (xj) and inputs (uj) at time t − 1, and a set of real coefficients —also
called weights— (aij , bij , ci). More precisely, each neuron’s state is updated by
an equation of the type

xi(t + 1) = σ


 N∑

j=1

aij xj(t) +
M∑

j=1

bij uj(t) + ci


 , i = 1, . . . , N (1)

where N is the number of neurons, M is the number of external input signals,
and σ is a “sigmoid-like” function. In the basic model, σ is a very simple sigmoid,
called the saturated-linear function:

σ(x) :=




0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1 .

(2)

A subset of p out of the N neurons (the output neurons) is used to communicate
the outputs of the network to the environment. Thus a network is specified by
the data (aij , bij , ci), together with a subset of its neurons.

Note that this model is highly homogeneous: each neuron computes the com-
position of two simple functions: affine combination and the simple saturated-
linear activation function. The networks are built up of a finite number of neu-
rons, whose number does not increase with the length of the input. The struc-
ture of the network, including the values of the interconnection weights, does
not change in time, but rather remains constant. What changes in time are the
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activation values, or outputs of each neuron. In this sense our model is “uni-
form” in contrast with certain models used in the past (e.g., [17]) that allow
the number of units to increase over time and often even allow the structure to
change, depending on the length of inputs being presented.

The network is a parametric model of computation: altering its constitutive
parameters allows the model to coincide with previous models which are com-
putationally and conceptually different. In particular the computational power
depends on the type of numbers utilized as weights. When the weights are inte-
gers, the network is a finite state machine only. When the weights are rational
numbers, the network is equivalent (in power and time) to the Turing Machine
model ([41, 43]). Finally, when the weights require infinite precision, the finite
networks are proved to be stronger than the Turing model, and to compute under
polynomial time constraints the class P/poly, to be described in the next section.
(The class P/poly includes all P and, moreover, some of EXP and even a few
non-recursive functions, e.g. a unary encoding of the halting problem. However,
this class of functions consists of a very small fraction of all binary functions.).
This nonuniform class is thus associated with the uniform networks having large
precision.

It was proven in [42] that, although real weight neural networks are defined
with unbounded precision, they demonstrate the feature, referred to as “linear
precision suffices”. That is, up to the qth step of the computation, only the first
O(q) bits, in both weights and activation values of the neurons, influence the
result. This means that for time bounded computation, only bounded precision
is required. This property can be viewed as time-dependent resistance (“weak
resistance”) of the networks to noise and implementation error. (It is interesting
to note that the amount of information necessary for the neural networks is
identical to the precision required by chaotic systems, therefore neural networks
may constitute a framework for the modeling of physical dynamics.)

In the current work, we consider recurrent neural networks that are allowed
to exhibit stochastic and random behavior.

1.2 Randomness

Randomness is a basic characteristic of large distributed systems. It may result
from the activity of the individual agents, from unpredictable changes in the
communication pattern among the agents, or even just from the different update
paces. All previous work that examined stochasticity in networks, e.g. [50, 36,
1, 34, 35, 8, 9], studied only acyclic architectures of binary gates, while we
study general architectures of analog components. Due to these two qualitative
differences, our results are totally different from the previous ones, and require
new proof techniques.

Our particular stochastic model can be seen as an incorporation of the von
Neumann model of unreliable interconnections of components to the area of
neural networks: the basic component has a fixed probability ε for malfunction
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at any step [50]. In contrast to the von Neumann model, here it is natural to allow
for real values in ε, rather than rational values only. Furthermore, ε can be either
a constant, as in the von Neumann model, or alternatively, a function of the
history and the neighboring neurons. The latter, referred to as “the Markovian
model,” provides a useful model for stochastic computation. The element of
stochasticity, when joined with exact known parameters, has the potential to
increase the computational power of the underlying deterministic process. We
find that it indeed adds some power, but only if the weights are rationals. In
the cases of real weights and integer weights, this type of stochasticity does not
change the computational power of the underlying process.

The proof concerning rational weights includes the following result from the
realm of theoretical computer science. It is well known that probabilistic Turing
machines that use binary coins with rational probabilities compute the class
BPP. Here we consider binary coins having real probabilities and prove that
the resulting polynomial time computational class is BPP/log∗, which is BPP
augmented with prefix logarithmic advice.

It is perhaps surprising that the real probabilities strengthens the Turing
machine, because the machine still reads only the binary values of the coin flips.
However, a long sequence of coin flips allows indirect access to the real valued
probability, or more accurately, it facilitates its approximation with high prob-
ability. This is in contrast to the case of real weight networks, where access to
the real values is direct and immediate. Thus, the resulting computation class
(BPP/log∗) is of intermediate computational power. It contains some nonrecur-
sive functions, but is strictly weaker than P/poly.

Because real probabilities do not provide the same power as real weights,
this work can be seen as suggesting a model of computation which is stronger
than a Turing machine, but still is not as strong as real weight neural networks.
Complementary to the feature of “linear precision suffices” for real weights we
prove that for stochastic networks “logarithmic precision suffices” for the real
probabilities; that is, for up to the qth step of the computation, only the first
O(log q) bits in the probabilities of the neurons influence the result. We note
that the same precision characterizes the quantum computer.

This report is organized as follows: Section 2 provides the required prelim-
inaries of computational classes. Section 3 focuses on our stochastic networks,
distinguishing them from a variety of stochastic models. Section 4 states the
main results. Sections 5-7 include the proofs of the main theorems. In Section
8 we restate the model in various forms and in Section 9 we briefly describe a
particular form of nondeterministic stochastic networks.

2 Preliminaries: Computational Classes

Let us shortly describe the computational classes relevant for this work. Turing
machines are the basic computational model that is believed to describe all
digital computers. Turing machine can be thought of computing input-output
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maps of binary strings: the machine receives a binary string as an input and
halts with another binary string on its tape, which is considered as the output.
The functions computed by the various Turing machines constitute the recursive
computational class. When the Turing machines are constrained to compute
efficiently only, (i.e., to require not more time that polynomials in the length of
the binary input string), the computational class is P. A particular subclass of
P is the class of regular functions, which describes the functions computed by
finite automata, see e.g. [18].

2.1 Probabilistic Turing Machines

The basis of the operation of the probabilistic Turing machine, as well as of
our stochastic neural networks, is the use of random coins. In contrast to the
deterministic machine, which acts on every input in a specified manner and
responds in one possible way, the probabilistic machine may produce different
responses for the same input.

Definition 1. ([2], volume I): A probabilistic Turing machine is a machine that
computes as follows:

1. Every step of the computation can have two outcomes, one chosen with
probability p and the other with probability 1− p.

2. All computations on the same input require the same number of steps.
3. Every computation ends with reject or accept.

All possible computations of a probabilistic Turing machine can be described by
a full (all leaves at the same depth) binary tree whose edges are directed from
the root to the leaves. Each computation is a path from the root to a leaf, which
represents the final decision, or equivalently, the classification of the input word
by the associated computation. A coin, characterized by the parameter p, chooses
one of the two children of a node. In the standard definition of probabilistic
computation, p takes the value 1

2 .
The error probability of a probabilistic Turing machine M is the function

eM(ω) defined by the ratio of computations on input ω resulting in the wrong
answer to the total number of computations on ω (which is equal to 2T (|ω|). The
decision is defined as right or wrong with respect to a language L. Probabilistic
computational classes are defined relative to the error probability. PP is the
class of languages accepted by polynomial time probabilistic Turing machines
with eM < 1

2 . A weaker class defined by the same machine model is BPP,
which stands for bounded error probabilistic polynomial time. BPP is the class of
languages recognized by polynomial time probabilistic Turing machines whose
error probability is bounded above by some positive constant ε < 1

2 . The latter
class is recursive but it is unknown whether it is strictly stronger than P. There
are other probabilistic classes such as R and ZPP, which are beyond the scope
of this book, see e.g. [2].
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2.2 Nonuniform Turing Machines

Nonuniform complexity classes are based on the model of advice Turing ma-
chines [21]; these, in addition to their input, receive also another sequence that
assists in the computation. For all possible inputs of the same length n, the
machine receives the same advice sequence, but different advice is provided for
input sequences of different lengths. When the different advice strings cannot
be generated from a finite rule (e.g. Turing machine) the resulting computa-
tional classes are called nonuniform. The nonuniformity of the advice translates
into noncomputability of the corresponding class. The length of the advice is
bounded as a function of the input, and can be used to quantify the amount of
noncomputability.

Let Σ be an alphabet and $ a distinguished symbol not in Σ; Σ$ denotes
Σ
⋃{$}. We use homomorphisms h∗ between monoids like Σ∗

$ and Σ∗ to encode
words. Generally these homomorphisms are extensions of mappings h from Σ$
to Σ∗, inductively defined as follows: h∗(ε) = ε and h∗(aω) = h(a)h∗(ω) for
all a ∈ Σ$ and ω ∈ Σ∗

$ . For example, when working with binary sequences, we
usually encode “0” by “00”, “1” by “11”, and $ by “01”.

Let A ⊆ Σ∗ and ν : IN → Σ∗. Define Aν = {ω$ν(|ω|) | ω ∈ A}, Aν ⊂ Σ$.
Note that all words of Aν that have the same length also receive the same suffix
ν(|ω|). This suffix is called the advice. We next encode Aν back to Σ∗ using a
one to one homomorphism h∗ as described above. We denote the resulting words
by 〈ω, ν(|ω|)〉 ∈ Σ∗.

Definition 2. nonuniformity: Given a class of languages C and a class of
bounding functions H. We say that A ∈ C/H if and only if there is a function
ν ∈ H such that h∗(Aν) ∈ C.

Some frequent H’s are the space classes poly and log.
We next concentrate on the special case of prefix nonuniform classes [3]. In

these classes, ν(n) must be useful for all strings of length up to n, not only those
of length n. This is like in the definitions of “strong” [24] or “full” [3] nonuniform
classes. Furthermore, ν(n1) is the prefix of ν(n2) for all lengths n1 < n2. Formally
we define Ãν to be the set {ω1$ν(|ω|) | ω, ω1 ∈ A and |ω1| < |ω|}.

Definition 3. Prefix nonuniformity: Given a class of languages C and a class
of bounding functions H. We say that A ∈ Pref-C/H if and only if there is a
prefix function ν ∈ H such that h∗(Ãν) ∈ C. For the sake of brevity, we use the
notation of C/H∗ for the prefix advice class.

A special case is that of a Turing machine that receives a polynomially long
advice and computes in polynomial time. The class obtained in this fashion is
called P/poly, and in this case P/poly = P/poly∗. When exponential time and
advice are allowed, any language on {0, 1} is computable. Every such language
can be recognized in the following form: just prepare a table of length 2n whose
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entries are associated with all the binary sequences of length n, in the lexico-
graphic order. In each entry (sequence) write the bit “1” if the sequence is in the
language, and ’0” if it is not. Concatenate all 2n bits into a sequence and use
it as the advice for inputs of length n. This sequence encodes all the required
information for accepting or rejecting any input sequence of length n.

Recall the probabilistic class BPP from subsection 2.1. We will later focus
on the class BPP/ log ∗. It is not hard to see that BPP/ log ∗ is a strict subset of
BPP/ log. Any tally set is in P/1 (and thus is clearly also in P/log and BPP/ log).
Let S be a tally set, whose characteristic sequence is completely random (say,
Kolmogorov random). It can not be in any class RECURSIVE/ log ∗ because
there is not enough information in O(log n) bits to get the nth bit of S. As a
special case S is not in BPP/ log ∗.

3 Stochastic Networks

Four main questions are to be addressed when considering stochastic networks.
How do we model stochasticity? What type of random behavior (or errors)
should be allowed? How much randomness can be handled by the model? Fi-
nally, stochastic networks are not guaranteed to generate the same response in
different runs of a given input; thus, how do we define the output of the network
for a given input?

Modeling Stochasticity The first question, how to model stochasticity, was
discussed by von-Neumann [50] and quoted by Pippenger [36]:

The simplest assumption concerning errors is this: With every basic or-
gan is associated a positive number ε such that in any operation, the
organ will fail to function correctly with the (precise) probability ε. This
malfunctioning is assumed to occur statistically independently of the
general state of the network and of the occurrence of other malfunc-
tions.

We first adopt von Neumann’s statistical independence assumption. This as-
sumption is also consistent with the works of Wiener [51] and Shannon [39],
where the “noise” —which is the source of stochasticity— is modeled as a ran-
dom process with known parameters. Note that in this model, the components
are stochastic in precisely the amount ε, and “are being relied upon to behave
unreliably in this exact amount” [36] (see also [8, 9, 35]). Similarly, in our work
we assume either full knowledge of ε, or only knowledge of the first O(log T )
bits of ε, where T is the computation time of the network. We show these two
options to be equivalent. We then continue and expand to a Markovian model
of stochasticity: here ε depends on the neighboring neurons and the recent his-
tory of the system. This richer model can be used to describe various natural
phenomena.
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Types of Randomness As for the second question, regarding the type of
randomness, we consider any type of random behavior that can be modeled
by augmenting the underlying deterministic process, either with independent
identically distributed binary sequences (IID), or with Markovian sequences. We
then abandon the stochastic coin model and substitute it with asynchronicity of
update and with various nondeterministic reactions of the neurons themselves.
This will be described in Section 8, where we discuss stochastically forgetting
neurons (each neuron forgets its activation value with some probability; this
forgetting is modeled as resetting the activation value to “0”) and also the effect
of probabilistic changes in the interconnection between neurons; various other
types of randomness are proposed.

Amount of Randomness The next question we consider is the amount of
stochasticity allowed in the model. Von Neumann assumed a constant failure
probability ε in the various gates, independent of the size of the network. Fur-
thermore, he allowed all components to behave randomly. Thus, larger networks
suffer from more unreliability than smaller ones. In contrast, many later models
allowed ε to decrease with the size of the net (see discussion in [36]), and others
assumed the incorporation of fully deterministic/reliable components in critical
parts of the network (see, e.g., [23, 29, 31, 49]). Because our network is recur-
rent, it is easy to verify that when ε is constant and all neurons are unreliable, no
function requiring non-constant deterministic time T (n) is computable by the
network. We thus focus on networks which include both reliable/deterministic
neurons and unreliable/stochastic neurons characterized by fixed εs. It is beyond
the scope of this book, but it is worth noting that some biological modelings con-
sider networks that combine deterministic and stochastic behavior. (An equiv-
alent computational model can be achieved by allowing all neurons to behave
randomly, while forcing the error to decrease polynomially with the parameter
T (n).)

Defining the Output Response As for the question of defining an output for
the probabilistic process, we adopt the bounded error approach. Given ε < 1

2 ,
we only consider networks that yield a wrong output on at most a fraction ε of
the possible computations.

3.1 The Model

The underlying deterministic network is as introduced in Subsection 1.1. The
following definition endows the network with stochasticity.

Definition 4. A stochastic network has additional input lines, called stochastic
lines, that carry independent identically distributed (IID) binary sequences, one
bit per line at each tick of the clock. The distributions may be different on the
different lines. That is, for all time t ≥ 0, the stochastic line li has the value 1
with probability pi (0 ≤ pi ≤ 1), and 0 otherwise.
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Equivalently, stochastic networks can be viewed as networks composed of two
types of components: analog deterministic neurons and binary probabilistic
gates/coins. A probabilistic gate is a binary gate which outputs “1” with prob-
ability p ∈ [0, 1].

Yet another way to view the same model is to consider it a network of neu-
rons, part of which function deterministically, while others have “well-described
faults”; that is, their faulty behavior can be described by a neural circuit. More
on this and on other equivalent models appears in Section 8.

We define the recognition of a language by a stochastic network using the
bounded error model as in BPP. We assume that the number of steps in all com-
putations on an input ω is exactly the same. The classification of an input ω in a
computation run is the reject or accept decision at the end of that computation.
The final decision of ω considers the fraction of reject and accept classifications
of the various computations.

Definition 5. Let T : IN → IN be a total function on natural numbers. We say
that the language L ⊆ {0, 1}+ is ε-recognized in time T by a stochastic net N if
every ω ∈ {0, 1}+ is classified in time T (|ω|) by every computation path of N on
ω, and the error probability in deciding ω relative to the language L is bounded:
eN (ω) < ε < 1

2 . An equivalent definition is that for any given run on an input
ω, if ω is not accepted in time T (|ω|), then it is rejected.

In the end notes (Section 10) we demonstrate how to arbitrarily reduce the recog-
nition error in stochastic networks. This indicates that the following complexity
class is well-defined.

Definition 6. s-net is the class of languages that are ε-recognized by stochastic
networks for any ε < 1

2 .

4 The Main Results

Now that we have defined the model, we are ready to state the theorems about
stochastic networks and compare them with deterministic networks. Proofs ap-
pear in the following sections.

4.1 Integer Networks

In the deterministic case, if the networks are restricted to integer weights, the
neurons may assume only binary activations, and the networks become compu-
tationally equivalent to finite automata. Similar behavior occurs for stochastic
networks.

Theorem 7. The class s-netZ of languages that are ε-recognized by networks
with integer weights is the set of regular languages.

The case of integer weights is considered only for the sake of completeness.
Rational and real stochastic networks are of greater interest.
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4.2 Rational Networks

In deterministic computation, if the weights are rational numbers, the network is
equivalent in power to the Turing machine model. Two different I/O conventions
are suggested in [43]; in the first, input lines and output neurons are used, and
in the second, the discrete input and output are encoded as the state of two
pre-fixed neurons.

In Section 2.2 we introduced nonuniform computational classes; in particular
Definition 3 described the special case of prefix nonuniformity. We will next focus
on the class BPP/log∗. Because it includes nonrecursive functions, just like other
nonuniform classes, the following theorem is of special interest:

The following theorem states the equivalence between rational stochastic
networks and the class BPP/log∗:

Theorem 8. The class s-netQ [p] of languages ε-recognized by rational stochas-
tic networks in polynomial time is equal to BPP/log∗.

Remark. As a special case of this theorem we note that if the probabilities are all
rationals, then the resulting polynomial time computational class is constrained
to BPP.

Recall that BPP is recursive; it is included both in P/poly ([2] pg. 144, cor.
6.3) and in Σ2

∧
Π2 ([2] pg 172, Theorem 8.6). It is still unknown whether the

inclusion P ⊆ BPP is strict or not.

4.3 Real Networks

Deterministic real networks compute the class P/poly in polynomial time [42].
The addition of stochasticity does not yield a further increase in the computa-
tional power.

Theorem 9. Denote by netR (T (n)) the class of languages recognized by real
networks in time T (n), and by s-netR (T (n)) the class of languages ε-recognized
by real stochastic networks in time T (n). Then

netR (T (n)) ⊆ s-netR (T (n))
s-netR (T (n)) ⊆ netR (n2 + nT (n)) .

The results for polynomial stochastic networks are summarized in the following
table:
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Weights Deterministic Stochastic
ZZ regular regular
Q P BPP/log*
IR P/poly P/poly

Table 1. The computational power of recurrent neural networks

5 Integer Stochastic Networks

In this section we prove Theorem 7, which states the correspondence between
probabilistic automata and integer stochastic networks. The classical definition
of a probabilistic automaton (see [33] for example) is as follows:

Definition 10. A probabilistic automaton A is the 5-tuple A = (Q, Σ, p, q0, F )
where Q is a finite set of states, Σ is the finite input alphabet, q0 ∈ Q is the initial
state, and F ⊆ Q are the accepting states. The probabilistic transition function
p(m, q, a), wherem, q ∈ Q, anda ∈ Σ, specifies the probability of getting into
state m from a state q and the input symbol a. This transition function satisfies
that for all q and a, ∑

m∈Q

p(m, q, a) = 1 .

We consider the double-transition probabilistic automaton which is a special
case of probabilistic automata: the transition function may transfer each state-
input pair into exactly two states. That is, for all q ∈ Q and a ∈ Σ, there
are exactly two states m1qa, m2qa such that p(m1qa, q, a), p(m2qa, q, a) > 0 and
p(m1qa, q, a)+p(m2qa, q, a) = 1. It is easy to verify that this automaton is indeed
equivalent to the general probabilistic automaton (up to a reasonable slowdown
in the computation). The proof is left to the reader.

A double-transition probabilistic automaton can be viewed as a finite au-
tomaton with |Q||Σ| additional input lines of IID binary sequences; these lines
imply the next choice of the transition. From the equivalence of determinis-
tic integer networks and finite automata, we conclude the equivalence between
probabilistic automata and integer stochastic networks.

Rabin showed that bounded error probabilistic automata are computationally
equivalent to deterministic ones ([33], p. 160). Thus, stochastic networks with
integer weights are computationally equivalent to bounded error probabilistic
automata, and s-netZ is the class of regular languages.

6 Rational Stochastic Networks

This section is devoted to the proof of Theorem 8 which places rational stochastic
networks in the hierarchy of super Turing computation.
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We use a generalization of the classical probabilistic Turing machine [2] that
substitutes the random coin of probability 1

2 by a finite set of real probabilities.
(A set of probabilities is required in order to describe neurons with different
stochasticity.)

Definition 11. Let S = {p1, p2, . . . ps} be a finite set of probabilities. A Proba-
bilistic Turing machine over the set S is a nondeterministic machine that com-
putes as follows:

1. Every step of the computation can have two outcomes, one chosen with
probability p and the other with probability 1− p.

2. All computations on the same input require the same number of steps.
3. Every computation ends with reject or accept.

We denote by BP[S, T ] the class of languages recognized in time T by bounded
error probabilistic Turing machines with probabilities over S. We use the short-
hand notation BPP[S] = BP[S, poly]. Similarly, we denote s-netQ [S, T ] as the
class of languages recognized by rational stochastic nets in time T , with proba-
bilities from S.

Lemma 12. Let S be a finite set of probabilities, then BP[S, T ] and s-
netQ [S, T ] are polynomially time related.

Proof. 1. BP[S, T ] ⊆ s-netQ [S, O(T )]:
Let M be a probabilistic Turing machine over the set S that computes in
time T . We simulateM by a rational stochastic network N having stochastic
streams li with probabilities pi ∈ S. Consider the program:

Repeat
If (li=0) then NextStep(0, cur-state, cur-tapes)

else NextStep(1, cur-state, cur-tapes)
Until (final state)

where NextStep is a procedure that given the current state of a Turing
machine, the current tapes, and which of the two random choices to take,
changes deterministically to the next configuration of the machine. This
program can be compiled into a network that computes the same function,
having no more than a linear slowdown [40].

2. s-netQ [S, T ] ⊆ BP[S,poly(T )]:
It is easy to verify that if a rational stochastic network N has s IID input
channels, then it can be simulated by a probabilistic Turing machine over
the same s probabilities.

Next, we differentiate the case in which all probabilities of the set S are
rational numbers from the case where S contains at least one real element.
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6.1 Rational Set of Choices

Consider probabilistic Turing machines with probabilities over the set S, where
S consists of rational probabilities only. Zachos showed that in the error bounded
model, if the transition function decides its next state uniformly over k choices
(k is finite but can be larger than 2), this model is polynomially equivalent to the
classical probabilistic Turing machine with k = 2 [53]. When the probabilities
are rationals, we can substitute them all by a common divisor which is written
as 1

k′ for an integer k′. This process increases the number of uniform choices,
and implies polynomial equivalence between probabilistic Turing machines with
one fair coin, and probabilistic machines over a set S. We conclude Remark
4.2 stating the computational equality between the class s-netQ [poly] and the
class BPP. Thus, rational stochasticity adds power to deterministic rational
networks if and only if the class BPP is strictly stronger than P. Note that s-
netQ [poly] must be computationally strictly included in netR [poly], because
BPP is included in P/poly ([2] pg. 144, cor 6.3).

6.2 Real Set of Choices

Lemma 12 relates probabilistic Turing machines to stochastic neural networks.
The lemma below completes the proof of Theorem 8 by showing the equivalence
between real probabilities and log prefix advice in the probabilistic Turing model.
We define BPR(T ) = ∪p∈[0,1]BPP[{p}, T ] as the class of languages recognized by
probabilistic bounded error Turing machines that use coins of real probability
and compute in time T . BPQ(T )/log∗ is similarly defined, with the addition of
prefix advice. Note that BPQ(poly)/log∗ = BPP/log∗.
Lemma 13. The classes BPR(T ) and BPQ(T )/log∗ are polynomially related.

Proof.

1. BPR(T ) ⊆ BPQ(O(T log T ))/ log ∗ :
Let M be a probabilistic Turing machine over the probability p ∈ [0, 1] that
ε-recognizes the language L in time T (n). We show that a probabilistic Tur-
ing machine M′ having a fair coin, that upon receiving prefix advice of length
c log(T (n)) for a constant c, ε′-recognizes L in time O(T (n) log(T (n))). In italics
we describe the algorithm for the simulation and then we bound its error prob-
ability.

Let p′ be the rational number which is obtained from the c log(T (n)) most
significant bits of the binary expansion of p. The advice of M′ consists
of the bits of p′ starting from the most significant bits.
One coin flip byM can be simulated by a binary conjecture ofM′, which
is based on c log(T (n)) coin flips of its fair coin. M′ tosses c log(T (n))
times and compares the resulting guessed string with the advice to make
a binary conjecture. If the guessed string precedes the advice in the lexi-
cographic order, M′ conjectures “0”, otherwise M′ conjectures “1”.
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The error probability of M′ is the probability that it generates a sequence
of conjectures which yields a wrong decision. Denote by R the sequence of T (n)
binary conjectures thatM′ generates during its computation, and by B the set
of T (n)-long binary sequences which are “bad”, i.e. misleading conjectures. As
the error of M is bounded by ε, the cardinality of B is bounded by 2T (n)ε. We
conclude that

Pr (R ∈ B) =
∑
b∈B

Pr (R = b) ≤ |B|max
b∈B

Pr (R = b)

≤ 2T (n)ε max
b∈B

Pr (R = b).

We assume that p ≤ 1
2 . Then the most probable sequence for M′ to guess is

0T (n). Because p and p′ share the same O(log n) first bits,

|p′ − p| ≤ 1
T (n)c

,

and the total error ofM′ is bounded by

2T (n)ε(p +
1

T (n)c
)T (n) = (2p)T (n)ε(1 +

1
pT (n)c

)T (n) .

Using the formula

(1 + xn)n ≈ enxn (3)

for small xn, we approximate the above as

≈ (2p)T (n)εeT (n)(pT (n))−c

which is bounded by an error ε′ < 1
2 for c > 1.

2. BPQ(T )/ log ∗ ⊆ BPR(O(T 2)) :
Given a probabilistic Turing machineM, having a fair coin and a logarithmically
long prefix advice A that ε-recognizes a language L in time T (n), we describe
a probabilistic Turing machine M′ with an associated real probability p that
ε′-recognizes L in time O(T 2(n)).
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The probability p is constructed as follows. The binary expansion of p
starts with “.01”, i.e. 1

4 ≤ p ≤ 1
2 ; the following bits are the advice ofM.

M′ computes in two phases:

Phase I — Preprocessing: M′ guesses the advice sequence A of M by
tossing its unfair coin z = O(T 2(n)) times.

Phase II — Simulating the computation of M: M′ simulates each flip
of the fair coin of M by up to 2n tosses using the following algorithm:

(a) Toss the unfair coin twice.
(b) If the results are “01” conjecture “0”, if they are “10” conjecture

“1”.
(c) If the results are either “00” or “11” and (a) was called less than

T (n), goto (a).
(d) Conjecture “0”. (when (a) was called T (n) times and the decision

was not yet made.)

We first bound the error of guessing the advice. Let #1 be the number of
“1”’s found in z flips, and define

p′ =
#1
z

.

We next show that p′ is a good estimate for p by bounding |p−p′|. The Chebychev
formula states that for any random variable x with expectation µ and variance ν,
and ∀ε > 0, Pr (|x−µ|) > ε) ≤ v

ε2 . Here x is the sum of iid random variables; The
expectation of such z independent Bernoulli trials is µ = zp, and the variance is
ν = zp(1− p). We conclude that for all ε > 0,

Pr (|zp′ − zp| > ε) ≤ zp(1− p)
ε2

.

Because p(1− p) ≤ 1
4 (when p ∈ [ 14 , 1

2 ]), by choosing ε =
√

25z, we get

Pr

(
|p′ − p| >

√
25
z

)
≤ 1

100
.

Thus, if in the first phaseM′ tosses its coin z = 25T 2(n) times, then the advice
is reconstructed with logarithmically many bits and with an error probability
bounded by 1

100 (the first two bits “01” are omitted from the guessed advice).
We next prove the correctness of phase II. We compute the probability of

M′ to guess a bad sequence of coin flips. As above, we denote the set of mislead-
ing guesses by B, and by R the sequence of binary conjectures of length T (n)
generated by M′ during the algorithm.

Pr (R ∈ B) =
∑
b∈B

Pr (R = b) ≤ |B|max
b∈B

Pr (R = b)

360 Hava T. Siegelmann



– The probability of getting the values “00” or “11” in two successive coin flips
is p′ = p2 + (1− p)2 . Thus, the probability of ending a coin flip simulation
in step (d) of the algorithm is bounded by p′′ = p

′T (n). Since 1
4 ≤ p ≤ 1

2 , we

conclude that p′ ≤ 5
8 and p′′ ≤ 5

8
T (n).

– The probability of ending one coin flip simulation with the conjecture “0”
is: 1

2 (1− p′′) + p′′ = 1
2 + p′′

2 .

– maxb Pr (R = b) ≤ Pr (R = 0T (n)) = (1
2 + p′′

2 )T (n) .

Thus,

Pr (R ∈ B) ≤ 2T (n)ε(
1
2

+
p′′

2
)T (n) ≤ ε(1 + p′′)T (n)

≈ εeT (n) 5
8

T (n)
< ε2 .

The error probability ε′ ofM′ is bounded by

Pr(“wrong advice sequence”) + Pr(“bad guess sequence”) ≤ 1
100 + ε2

which is also bounded by 1
2 .

Remark. So far we have discussed stochastic networks, defined by adding choices
to deterministic networks. We can similarly define the stochastic nondetermin-
istic network by adding choices to nondeterministic networks. When weights are
rationals, the latter class is similar to the framework of interactive proof systems
([2] volume I, chapter 11).

7 Real Stochastic Networks

In this section we prove Theorem 9 and show that stochasticity does not add
power to real deterministic networks. It is trivial to show that stochasticity does
not decrease the power of the model; we thus focus on the other direction and
prove that s-netR [poly] ⊆ netR [poly].

We prove this inclusion in two steps. Given a real stochastic network that
ε-recognizes a language L, the first step describes a nonuniform family F of
feedforward networks that recognizes L; this creates only a constant slowdown
in the computation. The second step describes a deterministic recurrent network
that simulates the family F , with a polynomial slowdown of n2 + nT (n). (We
could skip the first step with a more elaborate counting argument in the second
step, but we prefer this method for its simplicity of representation.)

Lemma 14. Step 1: Let 0 < ε < 1
2 , and let L be a language that is ε-recognized by

a real stochastic network N of size N in time T . Then, L can also be recognized
by a family of nonuniform feedforward real networks F = {Nn}∞i=1 of depth
T (n) + 1 and size cNT (n) + 1, where

c = d 8ε ln 2
(1− 2ε)2

e .
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Proof. The technique used in this proof is similar to the one used in the proof
that BPP ⊆ P/poly [2].

Let N be a real network that ε-recognizes a language L as above. We show
the existence of a family of networks that recognizes L. Let r be the number of
probabilistic gates gk, 1 ≤ k ≤ r; each outputs “1” with probability pk. For a
given input of length n, by unfolding the network to T (n) layers, each a copy of
N , we get a feedforward network with r′

n = T (n)r probabilistic gates. Denote
this feedforward stochastic net by N ′

n.
We pick a string

ρi,n = ρi
1ρ

i
2 · · · , ρi

r′
n
∈ {0, 1}r′

n

at random, with probability p(j mod r) that ρi
j is “1”. Let N ′

n{ρi,n} be a deter-
ministic feedforward net similar to N ′

n, but with the string ρi,n substituting the
probabilistic gates (i.e., ρi

j substitutes gj mod r in level (j div r). We now pick cn
such strings

ρ[n] = (ρ1,n, ρ2,n, . . . ρcn,n)

at random. The feedforward net Nn consists of the cn subnetworks N ′
n{ρi,n}

(i = 1 . . . cn) and one “majority gate” in the final level. The majority gate takes
the output of the cn subnetworks as its input. That is, for each n, the network
Nn computes the majority over cn random runs of the stochastic net N .

We compute the probability that Nn outputs incorrectly on an input ω of
length n. By the definition of N , each N ′

n{ρi,n} has the probability ε of being
wrong. Thus, picking ρ[n] at random, the probability of Nn to fail is bounded
by B( cn

2 , cn, ε); this is the probability of being wrong in at least cn/2 out of cn
independent Bernoulli trials, each having the failure probability ε.

We use the bound B( cn
2 , cn, ε) ≤ (4ε(1 − ε))cn/2 from [32], and choose c =

d 8ε ln 2
(1−2ε)2 e to get

B(
cn

2
, cn, ε) < 2−n .

This is a bound on the error probability for any input of length n. Thus, the
sum of failures for all the inputs of length n is less than 1. Hence, there must
be at least one choice of random strings ρ[n] that makes Nn correctly recognize
any input of length n.

The above lemma of the 2-step algorithm introduces a family F of determin-
istic feedforward networks that decides L. This specially structured family will
be shown in the next step to be included in P/poly. More specifically, in the
following lemma we complete the proof of Theorem 9 with a construction of a
real deterministic network that simulates F .

Lemma 15. Step 2: Any language that is recognized by the real family F =
{Nn}∞n=1 described above can also be recognized by a real deterministic recurrent
network Nr. Furthermore, an input of length n that was recognized by the network
Nn having depth T (n), can be recognized by Nr in time O(n2 + nT (n)).
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Proof. We remind the reader that the whole family F was constructed from a
single recurrent neural network; call it N2. Each member Nn of F can thus be
described by the tuple

(N2, n, ρ[n])

where N2 is the underlying deterministic recurrent network, n is the index of
the network, and ρ[n] ∈ {0, 1}r′

ncn.

Let Ñ2 be any binary encoding of N2 and ρ̃ be the infinite string

ρ̃ = ρ[1] 2 ρ[2] 2 ρ[3] 2 · · · .

Let α = α1α2 · · · ∈ {0, 1, 2}# and denote by α|6 the value
∑|α|

i=1
2αi+1

6i . This
encoding is Cantor-like, and a network can read weights of this form letter by
letter in O(1) time each (see [43]). We next construct the recurrent network Nr

that has the weights Ñ2|6 and ρ̃|6 and recognizes the language L. Nr operates
as follows:

1. Nr reads the input ω and measures its length.

2. Nr retrieves the encoding ρ[n] from the constant ρ̃|6. (This takes
∑

j≤n |ρ[j]| ≤
O(n2) as proven in [42]).

3. Nr executes the code:

Func Net (ω, ρ[n], n, Ñ2);
Var Yes, No, z: Counter,

A: Boolean,
ρ: Real;

Begin
z=1 ;
Repeat

ρ← retrieve(ρ̃, i, n) % retrieving ρi,n

A← simulate (Ñ2, ρ, ω)
If A = 1 then Increment(Yes) else Increment(No)
Increment(z)

Until (z > cn)
Net ← Return(Yes > No)

End

We know that the command “simulate” is feasible from the constructive Turing
machine simulation in [43]. Furthermore, it was shown in [40] how to construct a
net from this type of high-level language. This program, as well as the associated
network, takes nT (n) steps. Thus Nr fulfills the requirements of Lemma 15, and
Theorem 9 is proven.

363Neural Dynamics with Stochasticity



8 Unreliable Networks

In this section we provide a different formulation of stochastic networks. Our von-
Neumann like modeling captures many types of random behavior in networks.
It can describe the probabilistic “forgetting” neuron:

x+
i =

{
regular update with probability 1− pi

0 with probability pi ; (4)

as well as the probabilistic “persistent” neuron:

x+
i =

{
regular update with probability 1− pi

xi with probability pi ; (5)

and the probabilistic “weakly connected” neuron xi, which is defined by the
update equation: xi(t + 1) = σ

(∑N
j=1 ãijxj(t) +

∑M
j=1 bijuj(t) + ci

)
, where

ãk
ij =

{
ak

ij with probability 1− pij

0 with probability pij .
(6)

We generally allow not only for these three types of errors but for more general
faults. Each stochastic neuron computes one of d functions which may be more
complicated than the above examples.

Definition 16. A neuron g is said to have a well-described fault if it computes
d different functions fi each with a probability pgi(

∑d
i=1 pgi = 1) such that all

the fi’s are deterministically computable by a net in constant time.

It is not difficult to verify the following:

Lemma 17. A stochastic network that consists of both well-described faulty and
deterministic neurons can be described by our stochastic modeling.

The proof is left to the reader.

Remark. Note that if all neurons are stochastic (“catastrophic nets”), the
stochasticity can no longer be controlled, and no function requiring non-constant
deterministic time T is computable by such a network. Introducing a varying er-
ror rate or a nonuniform architecture allows one to overcome the catastrophe.

Similarly, we can define the “Markovian” model of unreliability: unlike the
model of independent erroneous neurons, let us consider devices whose unreliable
behavior depends on the last c choices of all devices and the last c global states
in the network. This better models biological phenomena such as dying neurons,
toxication and the Korsakoff syndrome [10]. Note that this model is not strictly
Markovian because transitions do not depend only on the global states, but on
the choices as well.
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Definition 18. Let g be a well-described faulty neuron with d choices. Let x(i) ∈
[0, 1]N be the activation vector in time i, and let the vector

Fc,t = (x(t− c), . . . , x(t− 1)) ∈ [0, 1]cN

represent the activation values of the neurons in the previous c steps. Similarly,
let j(i) ∈ {1, 2, . . . , d}N be the vector of choices made by all neurons in time i,
and let the vector

Jc,t = (j(t− c), j(t− c + 1), . . . , j(t− 1)) ∈ {1, 2, . . . , d}cN

represent the choices made by all neurons in the previous c steps. Observe that
only x(t − c) in Fc,t is necessary: the rest can be computed from x(t − c) and
the choices Jc,t; we use this redundancy for simplicity of presentation.

A c-Markov network is a network with some unreliable neurons, for which
the probabilities pgi are functions of Jc,t and Fc,t; there exist dN stochastic sub-
networks that upon receiving pgi(t) as input, output “1” with this probability.

We state without proof:

Theorem 19. For any well-described fault and any constant c ≥ 1, c-Markovian
networks are computationally equivalent to networks of independent unreliability.

One final equivalent model that we note is the asynchronous model. To char-
acterize the behavior of the asynchronous neural networks, we adapt the classical
assumption of asynchronous distributed systems: no two neurons ever update si-
multaneously. An asynchronous network is a network with an additional N -level
probabilistic gate, g, where level li appears with probability pi (

∑
i pi = 1). At

each time t, only processor g(t) updates, and the output is interpreted proba-
bilistically.

9 Nondeterministic Stochastic Networks

While digital computing nondeterminism has a single definition, it has two possi-
ble interpretations in analog models. Weak nondeterminism incorporates guesses
of random bits into the computation. The strong nondeterministic model incor-
porates guesses of real numbers [6].

Definition 20. A stochastic architecture A is a network in which the probabil-
ities are variables vi. A nondeterministic stochastic architecture is an architec-
ture A that when given an input string ω, guesses the values of the probabilities
v = v1, v2, . . . vN and outputs a probabilistic response Av(ω) ∈ {0, 1}. As Av is
a stochastic network, it ε(v) recognizes a language LAv . The language accepted
by the architecture is thus

LA = {ω | ∃v, ε(v) ∈ (0,
1
2
) : Av(ω) = 1 with probability > 1− ε(v)} .
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As in the model of computation over the real numbers, we consider weak and
strong nondeterminism. We say that L is accepted by A using a strong model of
nondeterminism if v ∈ IRN , and by a weak model of nondeterminism when v is
a vector of N (non-periodic) rationals represented with O(T ) bits.

Lemma 21. Let nondet-s-netU [poly] be the nondeterministic counterpart of s-
netU [poly], where U ∈ {Q, R}, then s-netU [poly] = nondet-s-netU [poly]weak
= nondet-s-netU [poly]strong.

When considering rational weights, this says no more than that the class
BPP/log∗ is equivalent to its nondeterministic version; it is a simple corollary
of the observation that only the first O(log T (n)) bits of the probabilities v are
significant in a probabilistic computation.

10 End Notes: Reducing the Error Probability

The following lemma is standard for probabilistic models of computation. It
shows that the error probability can be reduced to any desired value. The par-
ticular form we use is analogous to the lemma concerning threshold circuits [32].

Lemma 22. Let f(λ, ε) = d 2 log λ
log(4ε(1−ε))e. For every 0 < λ < ε < 1

2 , any language
that is ε-recognized by a stochastic network N of size N and in computation
time T , can also be λ-recognized by another stochastic network N ′ either of size
Nf(λ, ε) and in time (T + 1), or of size (N + 10) and in time T (f(λ, ε) + 10).

Proof. (Sketch):
The main idea is to perform b independent computations of the network N on
the same input ω, and output the majority result of these computations.

The probability of an error in this experiment is the probability of having
an error in at least half of b independent Bernoulli trials, where each trial has a
failure probability ε. Given b Bernoulli trials, the probability of failing up to m
of them is

B(m, b, ε) =
m∑

i=1

(
b
i

)
εi(1− ε)b−i .

For m = d b
2e − 1 this probability can be bounded by (4ε(1 − ε))

b
2 . Choosing

b ≥ 2 log λ
log(4ε(1−ε)) , the error is bounded by λ.

The independent trials can be implemented either serially or in parallel. In
the serial case, the net computes b trials serially, using the same hardware,
while keeping track of all of its history decisions, and decides upon the majority.
Ten neurons suffice for the necessary bookkeeping. The parallel version yields
a network that consists of b parallel copies of the original hardware and an
additional neuron to majorize the results.
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