
Temporal Abstraction in RL

How can an agent represent stochastic, closed-loop,
temporally-extended courses of action? How can it
act, learn, and plan using such representations?

 HAMs (Parr & Russell 1998; Parr 1998)
 MAXQ (Dietterich 2000)
 Options framework (Sutton, Precup & Singh 1999;

Precup 2000)



Outline

 Options
 MDP + options = SMDP
 SMDP methods
 Looking inside the options



Markov Decision Processes (MDPs)
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S: set of states of the environment
A(s): set of actions possible in state s, for all s∈S

γ: discount rate
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Example

G

 Actions
 North, East, South, West
 Fail 33% of the time

 Reward
 +1 for transitions into G
  0 otherwise

 γ = 0.9



Options

 A generalization of actions
 Starting from a finite MDP, specify a way of

choosing actions until termination
 Example: go-to-hallway
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A Markov option can be represented as a triple o =< I," ,# >

•  I $ S is the set of states in which o may be started

•  " :S % A& [0,1] is the policy followed during o

•  #:S& [0,1] is the probability of terminating in each state

 

Markov options



Examples

 Dock-into-charger
 I : all states in which charger is in sight
 π : pre-defined controller
 β : terminate when docked or charger not visible

 Open-the-door
 I : all states in which a closed door is within reach
 π : pre-defined controller for reaching, grasping, and

turning the door knob
 β : terminate when the door is open



One-Step options

! 

A primitive action a"#
s"S As

 of the base MDP is also 

an option, called a one - step option.

•  I = {s : a" A
s
}
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•  &(s) =1,%s" S

 



Markov vs. Semi-Markov options

 Markov option: policy and termination
condition depend only on the current state

 Semi-Markov option: policy and termination
condition may depend on the entire history
of states, actions, and rewards since the
initiation of the option
 Options that terminate after a pre-specified

number of time steps
 Options that execute other options



  

! 

A semi - Markov option may be represented as a triple o =< I," ,# >

•  I $ S is the set of states in which o may be started

•  " :H % A& [0,1] is the policy followed during o

•  #:H& [0,1] is the probability of terminating in each state

 

Let H be the set of possible histories (segments of
experience)
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Semi-Markov Options



Value functions for options
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Options define a  Semi-Markov
Decision Process (SMDP)

Discrete time
Homogeneous discount

Continuous time
Discrete events
Interval-dependent discount

Discrete time
Overlaid discrete events
Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level

MDP

SMDP
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SMDPs

 The amount of time between one decision and
the next is a random variable τ

 Transition probabilities

 Bellman equations

! 

P(s'," | s,a)

! 

V
*
(s) =

o"A
s

max R(s,a) + #$P(s',$ | s,a)V *
(s')]

s',$

%
& 

' 
( 

) 

* 
+ 

! 

Q
*
(s,a) = R(s,a) + "#P(s',# | s,a)max

o'$As 's',#

% Q
*
(s',a')



Option models

They generalize the reward and transition probabilities of an
MDP in such a way that one can write a generalized form of
the Bellman optimality equations.
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Bellman optimality equations

Bellman optimality equations can be solved, exactly
or approximately, using methods that generalize the
usual DP and RL algorithms.
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DP backups
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HALLWAYS

O2

O1 G

Goal states are
given a terminal
value of 1

ROOM

Illustration: Rooms Example

8 multi-step options,
to each room's 2

hallways



Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal )=1

V(goal )=1

Synchronous value iteration



end of one option,
beginning of next
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SMDP Q-learning backups

 At state s, initiate option o and execute until termination
 Observe termination state s´, number of steps τ,

discounted return r



Looking inside options

SMDP methods apply to options, but only when
they are treated as opaque indivisible units. Once
an option has been selected, such methods require
that its policy be followed until the option
terminates. More interesting and potentially more
powerful methods are possible by looking inside
options and by altering their internal structure.

—Precup (2000)



Intra-option Q-learning

! 

Qk+1(st ,o) = (1"#k )Qk (st ,o) +#k rt+1 + $Uk (st+1,o)[ ],
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Update every Markov option o whose policy could have selected at
according to the same distribution π(st, ·):

where

is an estimate of the value of state-option pair (s,o) upon arrival in state s.



Illustration: Intra-option Q-learning

Random start, goal in
right hallway, choice
from actions and
options, 90% greedy

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal )=1

V(goal )=1

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal )=1

V(goal )=1



Discrete time
Homogeneous discount

Continuous time
Discrete events
Interval-dependent discount

Discrete time
Overlaid discrete events
Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level
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Summary



What else?

 Intra-option learning of option models
 Early termination of options
 Improving option policies (given its reward

function)
 Learning option policies given useful subgoals to

reach (e.g. hallways in the sample problem)



Which states are useful subgoals?

States that …
 have a high reward  gradient or are visited frequently

(Digney 1998)
 are visited frequently only on successful trajectories

(McGovern & Barto 2001)
 change the value of certain variables

(Hengst 2002; Barto et al. 2004; Jonsson & Barto 2005)
 lie between densely connected regions

(Menache et al. 2002; Mannor et al. 2004; Simsek & Barto 2004;
Simsek, Wolfe & Barto 2005)
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