
Temporal Abstraction in RL

How can an agent represent stochastic, closed-loop,

temporally-extended courses of action? How can it

act, learn, and plan using such representations?

! HAMs (Parr & Russell 1998; Parr 1998)

! MAXQ (Dietterich 2000)

! Options framework (Sutton, Precup & Singh 1999;

Precup 2000)

Outline

! Options

! MDP + options = SMDP

! SMDP methods

! Looking inside the options

Markov Decision Processes (MDPs)

 t

r
s s

r
s. . . s

 t a
t +1

 t +1
 t +1a

r
t +2

 t +2
 t +2a

t +3
 t +3 . . .

 t +3a

S: set of states of the environment

A(s): set of actions possible in state s, for all s!S

": discount rate

!

P
ss'

a
= Pr{s

t+1 = s' | s
t
= s, a

t
= a} "s,s'# S, a# A(s)

!

R
ss'

a
= E{r

t+1 | st = s, a
t
= a, s

t+1 = s'} "s,s'# S, a# A(s)

Example

G

! Actions

! North, East, South, West

! Fail 33% of the time

! Reward

! +1 for transitions into G

! 0 otherwise

! " = 0.9

Options

! A generalization of actions

! Starting from a finite MDP, specify a way of

choosing actions until termination

! Example: go-to-hallway

!

A Markov option can be represented as a triple o =< I," ,# >

• I $ S is the set of states in which o may be started

• " :S % A& [0,1] is the policy followed during o

• #:S& [0,1] is the probability of terminating in each state

Markov options

Examples

! Dock-into-charger

! I : all states in which charger is in sight

! ! : pre-defined controller

! " : terminate when docked or charger not visible

! Open-the-door

! I : all states in which a closed door is within reach

! ! : pre-defined controller for reaching, grasping, and

turning the door knob

! " : terminate when the door is open

One-Step options

!

A primitive action a"#
s"S As

 of the base MDP is also

an option, called a one - step option.

• I = {s : a" A
s
}

• $ (s,a) =1,%s" I

• &(s) =1,%s" S

Markov vs. Semi-Markov options

! Markov option: policy and termination

condition depend only on the current state

! Semi-Markov option: policy and termination

condition may depend on the entire history

of states, actions, and rewards since the

initiation of the option

! Options that terminate after a pre-specified

number of time steps

! Options that execute other options

!

A semi - Markov option may be represented as a triple o =< I," ,# >

• I $ S is the set of states in which o may be started

• " :H % A& [0,1] is the policy followed during o

• #:H& [0,1] is the probability of terminating in each state

Let H be the set of possible histories (segments of

experience)

Ttttt
ssras ,...,,,,

11 ++

Semi-Markov Options

Value functions for options

!

Q
µ
(s,o) =

def

E{r
t+1 + "r

t+2 + ... |o initiated in s at time t,

µ followed after termination}

!

Q
O

*
(s,o) =

def

max
µ"#(O)

Q
µ
(s,o)

Set of all policies selecting

only from options in O

Options define a Semi-Markov

Decision Process (SMDP)

Discrete time

Homogeneous discount

Continuous time

Discrete events

Interval-dependent discount

Discrete time

Overlaid discrete events

Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level

MDP

SMDP

Options

over MDP

State

Time

SMDPs

! The amount of time between one decision and

the next is a random variable #

! Transition probabilities

! Bellman equations

!

P(s'," | s,a)

!

V
*
(s) =

o"A
s

max R(s,a) + #$P(s',$ | s,a)V *
(s')]

s',$

%
&

'
(

)

*
+

!

Q
*
(s,a) = R(s,a) + "#P(s',# | s,a)max

o'$As 's',#

% Q
*
(s',a')

Option models

They generalize the reward and transition probabilities of an
MDP in such a way that one can write a generalized form of
the Bellman optimality equations.

!

R
s

o
= E{r

t+1 + " r
t+2 +L+ "#$1

r
t+# |

o is initiated in state s at time t and lasts # steps}

!

 Pss'
o

= "#

#=1

$

% p(s',#)

Probability that o terminates in s´
after # steps when initiated in state s

Bellman optimality equations

Bellman optimality equations can be solved, exactly

or approximately, using methods that generalize the

usual DP and RL algorithms.

!

V
O

*
(s) =

o"O
s

max R(s,o) + P(s' | s,o)V
O

*
(s')]

s'

#
$

%
&

'

(
)

!

Q
O

*
(s,o) = R(s,o) + P(s' | s,o)max

o'"Os 's'

Q
O

*
(s',o')

DP backups

!

Qk+1(s,o) = R(s,o) + P(s' | s,o)max
o'"Os 's'

Qk (s',o')!

V
k+1(s) =

o"Os

max R(s,o) + P(s' | s,o)V
k
(s')]

s'

#
$

%
&

'

(
)

HALLWAYS

O2

O1 G

Goal states are

given a terminal

value of 1

ROOM

Illustration: Rooms Example

8 multi-step options,

to each room's 2

hallways

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal)=1

V(goal)=1

Synchronous value iteration

end of one option,

beginning of next

!

Qk+1(s,o) = (1"#k)Qk (s,o) +#k r + $ t max
o'%Os '

Qk (s',o')
&
' (

)
* +

SMDP Q-learning backups

! At state s, initiate option o and execute until termination

! Observe termination state s´, number of steps #,

discounted return r

Looking inside options

SMDP methods apply to options, but only when

they are treated as opaque indivisible units. Once

an option has been selected, such methods require

that its policy be followed until the option

terminates. More interesting and potentially more

powerful methods are possible by looking inside

options and by altering their internal structure.

—Precup (2000)

Intra-option Q-learning

!

Qk+1(st ,o) = (1"#k)Qk (st ,o) +#k rt+1 + $Uk (st+1,o)[],

!

Uk (s,o) = (1"#(s))Qk (s,o) + #(s)max
o'$O

Qk (s,o')

sst
 ta t +1On every transition: tr

Update every Markov option o whose policy could have selected at

according to the same distribution $(st, ·):

where

is an estimate of the value of state-option pair (s,o) upon arrival in state s.

Illustration: Intra-option Q-learning

Random start, goal in

right hallway, choice

from actions and

options, 90% greedy

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal)=1

V(goal)=1

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal)=1

V(goal)=1

Discrete time

Homogeneous discount

Continuous time

Discrete events

Interval-dependent discount

Discrete time

Overlaid discrete events

Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level

MDP

SMDP

Options

over MDP

State

Time

Summary What else?

! Intra-option learning of option models

! Early termination of options

! Improving option policies (given its reward

function)

! Learning option policies given useful subgoals to

reach (e.g. hallways in the sample problem)

Which states are useful subgoals?

States that …

! have a high reward gradient or are visited frequently
(Digney 1998)

! are visited frequently only on successful trajectories
(McGovern & Barto 2001)

! change the value of certain variables
(Hengst 2002; Barto et al. 2004; Jonsson & Barto 2005)

! lie between densely connected regions
(Menache et al. 2002; Mannor et al. 2004; Simsek & Barto 2004;
Simsek, Wolfe & Barto 2005)

References

! D. Precup. Temporal abstraction in reinforcement
learning. PhD thesis, University of Massachusetts
Amherst, 2000.

! R.!S. Sutton, D.!Precup, and S.!P. Singh. Between MDPs
and Semi-MDPs: A framework for temporal abstraction
in reinforcement learning. Artificial Intelligence, 112(1-
2):181–211, 1999.

! A.!G. Barto and S.!Mahadevan. Recent advances in
hierarchical reinforcement learning. Discrete Event
Dynamic Systems, 13(4):341 – 379, October 2003.

